Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:47:15.107Z Has data issue: false hasContentIssue false

Material and Electrical Properties of Gate Dielectrics Grown by Rapid Thermal Processing

Published online by Cambridge University Press:  26 February 2011

J. Nulman
Affiliation:
School of Electrical Engineering and National Research and Resource Facility for Submicron Structures, Cornell University, Ithaca, NY 14853.
J. P. Krusius
Affiliation:
School of Electrical Engineering and National Research and Resource Facility for Submicron Structures, Cornell University, Ithaca, NY 14853.
P. Renteln
Affiliation:
School of Material Science and Engineering, Cornell University, Ithaca, NY 14853.
Get access

Abstract

The material and electrical characteristics of silicon dielectric films prepared via Rapid Thermal Processing (RTP) are described. A commercial RTP system with heat provided by tungsten-halogen lamps was used. Silicon dioxide films were grown in pure oxygen and in oxygen with 4% hydrogen chloride ambients. As grown films were either annealed in a nitrogen ambient or nitrided in an ammonia ambient. Film thickness ranges from 4 to 70 nm for RTP times from 0 to 300 s at 1150 C. Current-voltage and capacitance-voltage methods were used for electrical characteristics. Ellipsometry, Auger and TEM were used for material characterization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hattori, T., Solid-State Technol., 1982,833.Google Scholar
2. Kriegler, R. J., Cheng, Y.C. and Coltton, D.R., J. Electrochem. Soc., 119 , 388 (1972); R. S. Ronen and P.H. Robinson, 119, 747 (1972).Google Scholar
3. Hashimoto, C., Muramoto, S., Shiono, N., and Nakajima, O., J. Electrochem. Soc., 127, 129 (1980).Google Scholar
4. Ito, T., Nakamura, T., and Ishikawa, H., IEEE Trans. Elec. Dev., ED–29, 498 (1982).Google Scholar
5. Lai, S. K., Lee, J. and Dham, V.K., IEEE International Electron Device Meeting Technical Digest, 1983, 190.Google Scholar
6. Wong, S.S. and Oldham, W., IEEE Elec. Dev. Lett., EDL–5, 175 (1984).CrossRefGoogle Scholar
7. Nulman, J., Krusius, J.P. and Rathbun, L., IEEE International Electron Device Meeting Technical Digest, 1984, 169.Google Scholar
8. Nulman, J., Krusius, J.P. and Gat, A., IEEE Elec. Dev. Lett, EDL–6 (5), 205 (1985).Google Scholar
9. HEATPULSE is a trade mark of AG Associates, 1325 Borregas Ave. Sunnyvale, CA 94089.Google Scholar
10. Nulman, J., Krusius, J. P., Shah, N., Gat, A. and Baldwin, A., 32nd Amer. Vac. Soc. National Symp., and J. Vac. Sci. and Tech., May/June, 1986.Google Scholar
11. Monkowski, J., Solid-State Technol., (7), 1979.Google Scholar
12. Deal, B.E. and Grove, A.S., J. Appl. Phys., 36 (12), 3770 (1965).CrossRefGoogle Scholar
13. Irene, E.A. and Meulen, Y.J. van der, J. Electrochem. Soc., 123 (9), 1380 (1974).Google Scholar
14. Massoud, H.Z., Plummer, J.D. and Irene, E.A., J. Electrochem. Soc., 132 (7), 1745 (1985).CrossRefGoogle Scholar
15. Irene, E.A., 32nd Amer. Vac. Soc. National. Symp., and J. Vac. Sci. and Tech., May/June, 1986.Google Scholar
16. Kriegler, R.J., Cheng, Y. C. and Colton, D.R., J. Electrochem. Soc., 119 (3), 388 (1972).Google Scholar
17. Hattori, T., J. Appl. Phys., 49 (5), 2994 (1978).CrossRefGoogle Scholar
18. Nulman, J., to be published.Google Scholar
19. Nulman, J., Scarpulla, J., Mele, T. and Krusius, J.P., IEEE International Electron Device Meeting Technical Digest, 1985.Google Scholar
20. 4145A device Parameter Analyzer, Hewlett-Packard Company, 1820 Embarcadero Rd. Palo Alto, CA 04303.Google Scholar
21. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (Wiley & Sons, New York, 1981), p.397.Google Scholar
22. Weinberg, Z.A., Young, D.R., Calise, J.A., Cohen, S.A., DeLuca, J.C., Deline, V.R., Appl. Phys. Lett., 45 (11), 1204 (1984).Google Scholar