Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T10:01:20.943Z Has data issue: false hasContentIssue false

Materials and Components for Flexible and Stretchable Transducers

Published online by Cambridge University Press:  01 February 2011

Siegfried Bauer*
Affiliation:
sbauer@jku.at, Johannes Kepler University, Soft Matter Physics, Altenberger Str. 69, Linz, 4040, Austria, 004373224689241, 004373224689273
Get access

Abstract

Flexible and stretchable electronic components are currently at the heart of macroelectronics research. Materials useful for such applications are based on entropy elastic soft matter, combined with energy elastic functional elements. Examples include functional materials for sensing pressure and temperature changes, such as ferroelectrets, ferroelectric polymers, and nanocomposites of ferroelectric polymers and piezoelectric ceramics. Components for making flexible or stretchable electronic components additionally require electronic circuitry based on amorphous silicon or on organic semiconductors. Progress in such electronic elements is rapid, state of the art are elements which can easily operate at low voltage levels of 1 V. Combined with functional materials, sensing elements for temperature and pressure changes are easily achieved, as demonstrated with a few working examples of paper thin microphones, optothermal switching elements and skin-like electronics. Entropy-elastic elastomers form the basis for actuating elements, outlined by examples based on self organized actuating structures. Such materials can be also made functional by design, enabling fully reversible stretchable sensing elements for temperature, pressure and other physical parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reuss, R. H., Hopper, D. G., and Park, J.-G., Macroelectronics, MRS Bulletin 31 (6), 447454 (2006).Google Scholar
2. Sun, Y. and Rogers, J. A., Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics, J. Mater. Chem. 17, 832840 (2007).Google Scholar
3. Bernards, D. A., Owens, R. M., Malliaris, G. G. (eds.), Organic semiconductors in sensor applications, Springer Series in Materials Science 107, Springer, Berlin-Heidelberg, New York 2007.Google Scholar
4. Lacour, S. P., Wagner, S., Huang, Z., and Suo, Z., Stretchable gold conductors on elastomeric substrates, Appl. Phys. Lett. 82, 24042406 (2003).Google Scholar
5. Lacour, S. P., Jones, J., Wagner, S., Li, T., and Suo, Z., Stretchable interconnects for elastic electronic surfaces, Proc. IEEE 93, 14591467 (2005).Google Scholar
6. Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R., Bauer, S., Lacour, S. P., and Wagner, S., Appl. Phys. Lett. 89, 073501 (2006).Google Scholar
7. Manunza, I., Sulis, A., and Bonfiglio, A., Pressure sensing by flexible, organic, field effect transistors, Appl. Phys. Lett. 89, 143502 (2006).Google Scholar
8. Zirkl, M., Haase, A., Fian, A., Schön, H., Sommer, C., Jakopic, G., Leising, G., Stadlober, B., Graz, I., Gaar, N., Schwödiauer, R., Bauer-Gogonea, S., and Bauer, S., Adv. Mat. 19, 2241 (2007).Google Scholar
9. Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T., Proc. Nat. Acad. Sci. 101, 9966 (2004).Google Scholar
10. Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., and Sakurai, T., Proc. Nat. Acad. Sci. 102, 12321 (2005).Google Scholar
11. Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., and Sakurai, T., Proc. Nat. Acad. Sci. 102, 12321 (2005).Google Scholar
12. Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z.-T., and Rogers, J. A., Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers, Appl. Phys. Lett. 88, 213101 (2006).Google Scholar
13. Fukada, E., History and recent progress in piezoelectric polymers, IEEE Ultrason. Ferroel. Freq. Contr. 47, 12771290 (2000).Google Scholar
14. Ploss, B., Ploss, B., Shin, F. G., Chan, H. L. W., and Choy, C. L., Pyroelectric or piezoelectric compensated ferroelectric composites, Appl Phys. Lett. 76, 27762778 (2000).Google Scholar
15. Schwödiauer, R., Graz, I., Kaltenbrunner, M., Keplinger, C., Bartu, P., Buchberger, G., Ortwein, C. and Bauer, S., Ferroelectrets for electroactive polymer hybrid systems, Proc. SPIE Conf. 6927, EAPAD, X, Bar-Cohen, Y. (ed.) in press (2008).Google Scholar
16. Buchberger, G., Schwödiauer, R. and Bauer, S., Flexible large area ferroelectret sensors for location sensitive touchpads, Appl. Phys. Lett. In press (2008).Google Scholar
17. Graz, I., Krause, M., Gaar, N., Camacho-Gonzalez, F., Bauer-Gogonea, S., Zirkl, M., Stadlober, B., Ploss, B., Bauer, S., and Wagner, S., Multifuntional polymer-ceramic nanocomposites for flexible electronic skin, in preparation.Google Scholar
18. Buchberger, G., Schwödiauer, R. and Bauer, S., Piezoelectric multimorphs for flexible bit-encoded keyboards, in preparation.Google Scholar
17. Röntgen, W. C., Über die durch Electricität bewirkten Form- und Volumenänderungen von dielectrischen Körpern, G. Wiedemann Annalen der Physik und Chemie, Vol. 11, 771786 (1882). (in German).Google Scholar
19. Pelrine, R., Kornbluh, R., Pei, Q., and Joseph, J., High-speed electrically actuated elastomers with strain greater than 100%, Science 287, 836839 (2000).Google Scholar
20. Kofod, G., Paajanen, M. and Bauer, S., Self-organized minimum-energy structures for dielectric elastomer actuators, Appl. Phys. A 85, 141143 (2006).Google Scholar
21. Kofod, G., Wirges, W., Paajanen, M. and Bauer, S., Energy minimization for self-organized structure formation and actuation, Appl. Phys. Lett. 90, 081916 (2007).Google Scholar
22. Galler, N., Ditlbacher, H., Steinberger, B., Hohenau, A., Dansachmüller, M., Camacho-Gonzalez, F., Bauer, S., Krenn, J. R., Leitner, A., and Aussenegg, F., Electrically actuated elastomers for electro-optical modulators, Appl. Phys. B 85, 710 (2006).Google Scholar