Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T07:07:22.414Z Has data issue: false hasContentIssue false

Measurements of Confined Energy Levels and Coulomb Charging Effect in Self-Assembled Ge Quantum Dots by Admittance Spectroscopy

Published online by Cambridge University Press:  10 February 2011

S. K. Zhang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, CHINA
Z. M. Jiang
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, CHINA
H. J. Zhu
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, CHINA
F. Lu
Affiliation:
Surface Physics Laboratory, Fudan University, Shanghai 200433, CHINA
Get access

Abstract

We perform measurements of the discrete quantum energy levels and Coulomb charging of self-assembled Ge quantum dots imbedded in Si barriers by using the admittance spectroscopy technique that was originally developed to measure the defect levels of bulk materials and the band offsets of heterojunctions. By varying the bias voltage, the population of carriers in the dot changes and the Coulomb charging effect could be clearly seen from the step-like change of the activation energy for hole emission in the admittance spectra. Up to five holes charged in a Ge dot with a lateral dimension of 13nm is observed. The energy levels of ground state and first excited state are determined. The advantages of this method are the relatively high measuring temperature, large signal to noise ratio, and its simple and straightforward use and interpretation. The requirement on the uniformity of the dot size distribution of the sample is quite tolerant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McMuen, P. L., Foxman, E. B., Meirav, U., Kastner, M. A., Meir, Yigal, Wingreen, Ned S. and Wind, S.J., Phys. Rev. Lett. 66, 2252(1994).Google Scholar
2. Sikorski, Ch. and Merkt, U., Phys. Rev. Lett. 62, 2164(1989).Google Scholar
3. Hansen., W., IIISmith, T. P., Lee, K. Y., Brum, J. A., Knoedler, C. M., Hong, J. M. and Kern, D. P., Phys. Rev. Lett. 62, 2168(1989).Google Scholar
4. Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Pearton, S. J., Baldwin, K. W. and West, K. W., Phys. Rev. Lett. 68, 3088(1992).Google Scholar
5. Anand, S., Carlsson, N., Pistol, M. E., Samuelson, L. and Seifert, W., Appl. Phys. Lett. 67, 3016(1995).Google Scholar
6. Vincent, G., Bois, D. and Pinard, P., J. Appl. Phys. 46, 5173(1975).Google Scholar
7. Lang, D. V., Panish, M. B., Capasso, F., Allam, J., Hamm, R. A., Sergent, A. M. and Tsang, W. T., Appl. Phys. Lett. 50, 736 (1987).Google Scholar
8. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P. and Petroff, P. M., Phys. Rev. Lett. 73, 2252(1994).Google Scholar
9. Lu, F., Wang, S. Q Jung, H., Zhu, Z.. Q. and Yao, Takafumi, J. Appl. Phys. 81, 2425(1997).Google Scholar
10. Goryll, M., Vescan, L., Schmidt, K., Mesters, S., Luth, H. and Szot, K., Appl. Phys. Lett. 71, 410(1997).Google Scholar