Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T13:59:44.529Z Has data issue: false hasContentIssue false

Measuring Vacancy Diffusivity and Vacancy Assisted Clustering by Nitridation Enhanced Diffusion of Sb IN Si(100) Doping Superlattices

Published online by Cambridge University Press:  21 February 2011

Toshiharu K. Mogi
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
H. -J. Gossmanri
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. S. Rafferty
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
H. S. Luftman
Affiliation:
AT&T Bell Laboratories, Breinigsville, PA 18031
F. C. Unterwald
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. Boone
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Michael O. Thompson
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

An investigation of the properties of Si native point defects was undertaken using low temperature annealing of molecular beam epitaxially grown Sb and B doping superlattice structures. The superlattice structures, consisting of 10 nm B or Sb doping spikes separated by 100 nm, were annealed in NH3 at 810°C, 860°C, and 910°C. During thermal nitridation under these annealing conditions, we observed enhanced Sb diffusivity caused by the injection of vacancies, and retarded B diffusivity, resulting from the depletion of interstitials. Since the diffusivities of Sb and B are proportional to the vacancy and interstitial concentrations respectivity, spatially resolved diffusivity measurements permit effective point defect diffusivities to be inferred. From the spatial decay length of the Sb diffusion enhancement, lower limits for the effective vacancy diffusivity were obtained (limited by possible vacancy trapping). Evidence of vacancy assisted Sb clustering during NH3 anneals is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fahey, P. F., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
2. Tan, T. Y. and Gösele, U., Appl. Phys. A 37, 1 (1985).Google Scholar
3. Fahey, P., Barbuschia, G., Moslehi, M., and Dutton, R. W., Appl. Phys. Lett. 46, 784 (1985).Google Scholar
4. Murarka, S. P., Chang, C. C., and Adams, A. C., J. Electrochem. Soc. 126, 996 (1979).Google Scholar
5. Hayafuji, Y. and Kajiwara, K., J. Electrochem. Soc. 129, 2102 (1982).Google Scholar
6. Ahn, S. T., Kennel, H. W., Plummer, J. D., and Tiller, W. A., Appl. Phys. Lett. 53, 1593 (1988).Google Scholar
7. Mizuo, S., Kusaka, T., Shintani, A., Nanba, M., and Higuchi, H., J. Appl. Phys. 54, 3860 (1983).Google Scholar
8. Gossmann, H. -J., Unterwald, F. C., and Luftman, H. S., J. Appl. Phys. 73, 8237 (1993).Google Scholar
9. Gossmann, H. -J., Rafferty, C. S., Vredenberg, A. M., Luftman, H. S., Unterwald, F. C., Eaglesham, D. J., Jacobson, D. C., Boone, T., and Poate, J. M., Appl. Phys. Lett. 64 312 (1994).Google Scholar
10. Gossmann, H. -J., Vredenberg, A. M., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Jacobson, D. C., Boone, T., and Poate, J. M., J. Appl. Phys. 74, 3105 (1993).Google Scholar
11. Gossmann, H. -J., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Boone, T., and Poate, J. M., Appl. Phys. Lett. 63, 639 (1993).Google Scholar
12. Pinto, M. R., Boulin, D. M., Rafferty, C. S., Giles, M. D. Jr, Kizziyalli, I. C., and Thoma, M. J., Proc. IEDM 92, 923 (1992).Google Scholar
13. TMA TSUPREM-4, version 6.0 (1993).Google Scholar
14. Griffin, P. B., PhD Thesis, Stanford University, 1989.Google Scholar
15. Park, H., PhD Thesis, University of Florida, 1993.Google Scholar
16. Zimmermann, H., Appl. Phys. Lett. 59, 3133 (1991).Google Scholar
17. Bracht, H., Stolwijk, N. A., and Hehrer, H., in Proc. 7th Int. Symp. on Silicon Materials Science and Technology (San Francisco, 1994).Google Scholar
18. Fair, R. B., in Impurity Doping Processes in Silicon, edited by Wang, F. F. Y. (North-Holland, Amsterdam, 1981), p. 315.Google Scholar
19. Sze, S. M., in VLSI Technology, edited by Sze, S. M. (McGraw-Hill, New Jersey, 1988), p. 17.Google Scholar