No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
High dose boron implantation into instrument grade 1–400 beryllium has been found to produce a substantial increase of its wear resistance. A comparison of the friction and wear behavior resulting from two shapes of the boron depth distribution is made. The wear resistance provided by a boron layer of constant (flat) concentration was found to be superior to that of a gradually decreasing (graded) profile. Rutherford backscattering was used to determine the boron depth distribution profiles and transmission electron microscopy was used to examine the microstructure. Electron diffraction pattern analysis provides evidence for the formation of beryllium borides.