Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T17:05:44.688Z Has data issue: false hasContentIssue false

Mechanical and Thermal Properties of Single Crystals of Some Thermoelectric Clathrate Compounds

Published online by Cambridge University Press:  05 September 2018

Norihiko L. Okamoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Takahiro Nakano
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Kyosuke Kishida
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Katsushi Tanaka
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

The mechanical and thermal properties of single crystals of the type-I clathrate compounds Ba8Ga16Ge30 and Sr8Ga16Ge30 have been investigated by measuring the elastic constants, coefficients of thermal expansion (CTE) and plastic deformation behavior in compression. The feasibility of these two clathrate compounds as a thermoelectric material in terms of mechanical stability under possible thermal stresses is evaluated by calculating thermal stresses that are expected to develop within these compounds when used as thermoelectric devises.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nolas, G. S., Cohn, J. L., Slack, G. A. and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).Google Scholar
2. Saramat, A., Svensson, G., Palmqvist, A. E. C., Stiewe, C., Mueller, E., Platzek, D., Williams, S. G. K., Rowe, D. M., Bryan, J. D. and Stucky, G. D., J. Appl. Phys. 99, 023708 (2006).Google Scholar
3. Okamoto, N. L., Kishida, K., Tanaka, K. and Inui, H., J. Appl. Phys. 101, 113525 (2007).Google Scholar
4. Kim, J. H., Okamoto, N. L., Kishida, K., Tanaka, K. and Inui, H., Acta Mater. 54, 2057 (2006).Google Scholar
5. Eisenmann, B., Schäfer, H. and Zagler, R., J. Less-Common Met. 118, 43 (1986).Google Scholar
6. Okamoto, N. L., Kishida, K., Tanaka, K. and Inui, H., J. Appl. Phys. 100, 073504 (2006).Google Scholar
7. Sales, B. C., Chakoumakos, B. C., Jin, R., Thompson, J. R. and Mandrus, D., Phys. Rev. B. 63, 245113 (2001).Google Scholar
8. Ueno, K., Yamamoto, A., Noguchi, T., Inoue, T., Sodeoka, S. and Obara, H., J. Alloys. Comp. 388, 118 (2005).Google Scholar
9. Keppens, V., McGuire, M. A., Teklu, A., Laermans, C., Sales, B. C., Mandrus, D., and Chakoumakos, B. C., Physica B, 316-317, 95 (2002).Google Scholar
10. Hill, R., Proc. Phys. Soc. A65, 346 (1952).Google Scholar
11. Tanaka, K. and Koiwa, M., High Temp. Mater. Proc. 18, 323 (1999).Google Scholar
12. Straumanis, M. E. and Aka, E. Z., J. Appl. Phys. 23, 330 (1952).Google Scholar
13. Touloukian, Y. S., Kirby, R. K., Taylor, R. E. and Desai, P. D., Thermophysical Properties of Matter, Vol. 12, “Thermal Expansion” (IFI/Plenum, New York, NY, 1975) p. 225.Google Scholar
14. Okamoto, N. L., Kusakari, M., Tanaka, K., Inui, H., Yamaguchi, M. and Otani, S., J. Appl. Phys. 93, 88 (2003).Google Scholar