Published online by Cambridge University Press: 26 February 2011
This paper reports on the refinement of a mechanical model for the load-deflection of multilayer membranes under uniform differential pressure and on its application to the experimental extraction of material parameters. Going beyond previous results, the analytical model takes into account the mechanics of multilayers and elastic supports covering all cases between rigidly clamped to simply supported structures and enables the straightforward assessment of stress profiles within the deformed structures. A comprehensive set of long membranes made of various multilayers of silicon nitride and oxide films are fabricated and characterized. The out-of-plane deflection profile under pressure load is monitored by means of a laser profilometer. The pressure is stepped up until fracture occurs. From the stress profiles in the membrane at fracture, the brittle material strength is analyzed using Weibull statistics. The bulge setup has been fully automated for the measurement of 80 membranes per wafer. This realizes, for the first time, the high throughput-acquisition of mechanical thin film data with convincing statistical control.