Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:02:05.421Z Has data issue: false hasContentIssue false

Mechanical Measurements at a Submicrometric Scale: Viscoelastic Materials

Published online by Cambridge University Press:  21 March 2011

Charlotte Basire
Affiliation:
ESPCI/LPQ, CNRS ESA 7069 Systèmes Interfaciaux á l'Echelle Nanométrique 10 rue Vauquelin F-75231 Paris cedex 05, France
Christian Fretigny
Affiliation:
ESPCI/LPQ, CNRS ESA 7069 Systèmes Interfaciaux á l'Echelle Nanométrique 10 rue Vauquelin F-75231 Paris cedex 05, France
Get access

Abstract

Adhesive and tribological properties of the tip of an AFM on viscoelastic samples are studied. The kinetics of the indentation process is shown to be governed by bulk rather than by contact edge dissipations. It is shown that the transition from static to dynamic friction regimes takes place at a critical strain. During the static friction regime, the contact size remains nearly constant. Owing to this property, viscoelastic moduli is measured in this regime. Obtained results, characteristic of a micrometric domain are in a very good agreement with the same properties measured on centimetric samples using dynamical mechanical analysis. Finally, a stick-slip friction regime is observed in a range of velocities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Johnson, K.L. and Greenwood, J.A., J. Colloid Interface Sci., 192, 326 (1997).Google Scholar
2. Maugis, D., J. Colloid Interface Sci., 150, 243 (1992).Google Scholar
3. Barquins, M. and Maugis, D., C. R. Acad. Sci. Paris, B285, 125 (1977).Google Scholar
4. Barquins, M. and Maugis, D., C.R. Acad. Sci. Paris, B286, 57 (1978).Google Scholar
5. Barquins, M. and Maugis, D., C.R. Acad. Sci. Paris, B287, 49 (1978).Google Scholar
6. Barquins, M. and Maugis, D., J. Phys. D: Appl. Phys., 11, 1989 (1978).Google Scholar
7. Johnson, K.L., Contact Mechanics and Adhesion of Viscoelastic Spheres, Microstructure and Microtribology of Polymer Surfaces, edited by Tsukruk, V.V. and Wahl, K.J. (ACS Symposium Series, 1999), pp. 2441.Google Scholar
8. Savkor, A.R. and Briggs, G.A.D., Proc. R. Soc. London, A, 356, 103 (1977).Google Scholar
9. Johnson, K.L., Proc. R. Soc. London, A, 453, 163 (1997).Google Scholar
10. Asif, S.A. Syed, Colton, R.J., and Wahl, K.J., Nanoscale surface mechanical property measurements: force modulation techniques applied to nanoindentation, Interfacial Properties on the Submicron Scale, edited by Frommer, J. and Overney, R. (ACS, in press).Google Scholar
11. Fretigny, C., Basire, C., and Granier, V., J. Appl. Phys., 82, 43 (1997).Google Scholar
12. Basire, C. and Fretigny, C., Experimental study of the friction regimes on viscoelastic materials, Microstructure and Tribology of Polymer Surfaces, edited by Tsukruk, V. and Wahl, K. (ACS Symposium Series, 1999), pp. 239257.Google Scholar
13. Basire, C. and Fretigny, C., Tribology Lett., in press.Google Scholar
14. Johnson, K.L., Kendall, K., and Roberts, A.D., Proc. R. Soc. London, B, A324, 301 (1971).Google Scholar
15. Johnson, K.L., J. Mech. Phys. Solids, 18, 115 (1970).Google Scholar
16. Loubet, J.L., Georges, J.M., Marchesini, O., and Milelle, G., J. Tribol., 106, 43 (1984).Google Scholar
17. King, R.B., Int. J. Solids Structures, 23, 1657 (1987).Google Scholar
18. Maugis, D. and Barquins, M., J. Phys. Lett., 42, L95 (1981).Google Scholar
19. Barquins, M. and Maugis, D., J. Mec. Theor. Appl., 1, 331 (1982).Google Scholar
20. Maugis, D. and Barquins, M., J. Phys. D: Appl. Phys., 16, 1843 (1983).Google Scholar
21. Basire, C. and Fretigny, C., C. R. Academie. Sci., Ser. II, B326, 273 (1998).Google Scholar
22. Falsafi, A., Deprez, P., Bates, F.S., and Tirrel, M., J. Rheol., 41, 1349 (1997).Google Scholar
23. Lin, Y.Y., Hui, C.-Y., and Baney, J.M., J. Phys. D: Appl. Phys., 32, 2250 (1999).Google Scholar
24. Lin, Y.Y., Hui, C.-Y., and Jagota, A., (to be published).Google Scholar
25. Hui, C.-Y., Baney, J.M., and Kramer, E.J., Langmuir, 14, 6570 (1998).Google Scholar
26. Giri, M., Bousfield, D. B., and Unertl, W.N., (to be published).Google Scholar
27. Basire, C. and Fretigny, C., C. R. Academie. Sci. Paris, B325, 211 (1997).Google Scholar
28. Hooker, J. and Creton, C., (to be published).Google Scholar
29. Graham, G.A.C., Q. Appl. Math., 26, 167 (1968).Google Scholar
30. Basire, C. and Fretigny, C., Eur. Phys. J. AP, 6, 323 (1999).Google Scholar
31. Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett., 59 (17), 1942 (1987).Google Scholar
32. Rabinowicz, E., Friction Fluctuations, Fundamentals of Friction: Macroscopic and Microscopic Processes, edited by Singer, I.L. and Pollock, H.M. (NATO ASI Series 220, 1992), pp. 2534.Google Scholar
33. Leung, O.M. and Goh, M.C., Science, 255, 64 (1992).Google Scholar
34. Meyers, G.F., DeKoven, B.M., and Seitz, J.T., Langmuir, 8, 2330 (1992).Google Scholar
35. Jin, X. and Unertl, W.N., Appl. Phys. Lett., 61, 657 (1992).Google Scholar
36. Elkaakour, Z., Aime, J.P., Bouhacina, T., Odin, C., and Masuda, T., Phys. Rev. Lett., 73, 3231 (1994).Google Scholar
37. Fretigny, C. and Michel, D., (to be published).Google Scholar