Published online by Cambridge University Press: 25 January 2013
Two types of as-cast microstructures have been observed in a series of near-equiatomic FeNiMnAl alloys: 1) an ultrafine microstructure in Fe30Ni20Mn20Al30 [1] and Fe25Ni25Mn20Al30, which consists of (Fe, Mn)-rich B2-ordered (ordered b.c.c.) and (Ni, Al)-rich L21-ordered (Heusler) phases aligned along <100>; and 2) a fine two-phase microstructure in Fe30Ni20Mn30Al20 and Fe25Ni25Mn30Al20, which consists of alternating (Fe, Mn)-rich f.c.c. and (Ni, Al)-rich B2-ordered platelets with an orientation relationship close to f.c.c (002) // B2 (002); f.c.c. [011] // B2 [001] [2]. The phases in Fe25Ni25Mn20Al30 coarsened upon annealing with no significant change in the chemical partitioning. The hardness behavior was studied as a function of the annealing time at 823 K. AnL21-to-B2 transition, which occurred at 573-623K, was observed using in-situ heating in a TEM. After annealing at 973 K for 100 h, needle-shaped clusters of (Fe, Mn)-rich precipitates were observed along the grain boundaries and in the matrix. The temperature dependence of the yield strength of as-cast Fe25Ni25Mn20Al30 was also studied.