Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T22:24:20.259Z Has data issue: false hasContentIssue false

Mechanical Properties of Oligothiophene Self Assembled Films by Atomic Force Microscopy.

Published online by Cambridge University Press:  01 February 2011

Imma Ratera
Affiliation:
Surface Science, Materials Science Department, Lawrence Berkeley National Laboratory, Berkeley, California – 94720, USA
Jinyu Chen
Affiliation:
Surface Science, Materials Science Department, Lawrence Berkeley National Laboratory, Berkeley, California – 94720, USA
Amanda Murphy
Affiliation:
Department of Chemistry, University of California, Berkeley, California – 94720, USA
Frank Ogletree
Affiliation:
Surface Science, Materials Science Department, Lawrence Berkeley National Laboratory, Berkeley, California – 94720, USA
Jean M. J. Fréchet
Affiliation:
Department of Chemistry, University of California, Berkeley, California – 94720, USA
Miquel B. Salmeron
Affiliation:
Surface Science, Materials Science Department, Lawrence Berkeley National Laboratory, Berkeley, California – 94720, USA
Get access

Abstract

The oligothiophene derivative (4-(5″″-tetradecyl-[2,2′;5′,2″;5″,2″′;5″′,2″″] pentathiophen-5-yl)-butyric acid (C14-5TBA) was synthesized and the structural and mechanical properties of self-assembled monolayers on mica have been studied by atomic force microscopy (AFM). The films were prepared by drop casting a dilute THF solution (1mM) of the oligothiphene on mica. Islands containing primarily monolayers with a very small percentage of multilayers were formed. The molecules adsorb through the carboxylic group, and expose the alkyl chain (CH2)13CH3. High resolution AFM scans reveal a well ordered structure of molecules with unit cell dimensions of 0.65 and 0.46 nm. Applying load to the tip, the molecular film was gradually compressed from an initial height of 4.1nm to a final one of 2.6 nm, corresponding to atilt of the alkyl chains. In regions covered with bilayers the molecules in the second layer were oriented opposite to those in the first layer, thus exposing the carboxylic end group to the air. These second layer was easily removed as the tip pressure increased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers; Marcel Dekker: New York, 1998.Google Scholar
2 Fichou, D. Handbook of Oligo- and Polythiophenes; Wiley-VCH: New York, 1998.Google Scholar
3(a) Dimitropoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.Google Scholar
(b) Huitema, H. E. A.; Gelinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K. E.; Hart, C. M.; Cantatore, E.; Herwig, P. T.; van Breemen, A. J. M. M.; de Leeuw, D. M. Nature 2001, 414, 599.Google Scholar
(c) Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.Google Scholar
4See references contained in: Mullen, K.; Wegner, G. Electronic Materials: The Oligomer Approach; Wiley-VCH: New York, 1998.Google Scholar
5(a) Bader, M. M.; Custelcean, R.; Ward, M. D. Chem. Mater. 2002, 15, 616.Google Scholar
(b) Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks., T. J. Adv. Mater. 2003, 15, 33.Google Scholar
(c) Chesterfield, R. J.; Newman, C. R.; Pappenfus, T. M.; Ewbank, P. C.; Haukaas, M. H.; Mann, K. R.; Miller, L. L.; Frisbie, C. D. Adv. Mater. 2003, 15, 1279.Google Scholar
(d) Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Ponomarenko, S.; Kirchmeyer, S.; Weber, W. Adv. Mater. 2003, 15, 91.Google Scholar
(e) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Angew. Chem. 2003, 115, 4030.Google Scholar
(f) Videlot, C.; Ackermann, J.; Blanchard, P.; Raimundo, J.-M.; Frere, P.; Allain, M.; de Bettignies, R.; Levillain, E.; Roncali, J. Adv. Mater. 2003, 15, 306 Google Scholar
6 Horowitz, G.; Bachet, B.; Yassar, A.; Lang, P.; Demanze, F.; Fave, L.-L.; Garnier, F. Chem. Mater. 1995, 7, 1337.Google Scholar
7 Servet, B.; Horowitz, G.; Ries, S.; Lagorsse, O.; Alnot, P.; Yassar, A.; Deloffre, F.; Srivastava, P.; Hajlaoui, R.; Lang, P.; Garnier, F. Chem. Mater. 1994, 6, 18091815.Google Scholar
8 Fichou, D. J. Mater. Chem. 2000, 10, 571588.Google Scholar
9(a) Bjornholm, T.; Hassenkam, T.; Reitzel, N. J. Mater. Chem. 1999, 9, 19751990 Google Scholar
(b) Reitzel, N.; Greve, D.R.; Kjaer, K.; Howes, P.B.; Jayaraman, M.; Savoy, S.; McCullough, R.D.; McDevitt, J.T.; Bjornholm, T. J. Am. Chem. Soc. 2000, 122, 57885800 Google Scholar
10 Sanberg, H.; Henze, O.; Sirringhaus, H.; Kilbinger, A.; Feast, W.; Friend, R. Proc. SPIE 2001, 4466, 3543.Google Scholar
11 Schenning, A.; Kilbinger, A.; Biscarini, F.; Cavallini, M.; Cooper, H.; Derrick, P.; Feast, W.; Lazzaroni, R.; Leclere, Ph.; McDonell, L.; Meijer, E.; Meskers, S. J. Am. Chem. Soc. 2002, 124, 12691275.Google Scholar
12 Chen, J.; Murphy, A. R.; Esteve, J.; Ogletree, D. F.; Salmeron, M.; Frechet, J. M. J.; Langmuir 2004; 20; 77037710.Google Scholar