Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:01:55.186Z Has data issue: false hasContentIssue false

Mechanism of Dry Etching of Silicon Dioxide: a Case of Direct Reactive Ion Etching

Published online by Cambridge University Press:  21 February 2011

Ch. Steinbruchel
Affiliation:
Laboratories RCA Ltd., Badenerstrasse 569, CH-8048 Zurich, Switzerland
H. W. Lehmann
Affiliation:
Laboratories RCA Ltd., Badenerstrasse 569, CH-8048 Zurich, Switzerland
K. Frick
Affiliation:
Laboratories RCA Ltd., Badenerstrasse 569, CH-8048 Zurich, Switzerland
Get access

Abstract

Reactive sputter etching of SiO2 with CHF3-O2 plasmas has been investigated in a parallel plate reactor by combining etch rate measurements with concurrent determination of ion densities (using a Langmuir probe) and the composition of neutral plasma species (using a mass spectrometer). Etch rates are found to follow the ion density and to be fairly independent of the plasma chemistry under most experimental conditions. Moreover, a comparison of reactive sputter etching and reactive ion beam etching of SiO2 with CHF3 and CF4 shows that etch yields per incoming ion are essentially independent of the flux of neutral radicals to the substrate. This strongly suggests as the dominant etch mechanism for SiO2 direct reactive ion etching, where ions themselves are the main reactants in the etch reaction. Measured values of etch yields are consistent with this picture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

|1| Flamm, D.L. and Donnelly, V.M., Plasma Chem. Plasma Process. 1, 317 (1981).Google Scholar
|2| Lehmann, H.W. and Widmer, R., J. Vac. Sci. Technol. 15, 319 (1978).CrossRefGoogle Scholar
|3| Schwartz, G.C., Rothman, L.B., and Schopen, T.J., J. Electrochem. Soc. 126, 464 (1979).CrossRefGoogle Scholar
|4| Vasile, M.J., J. Appl. Phys. 51, 2510 (1980).Google Scholar
|5| Toyoda, H., Komiya, H., and Itakura, H., J. Electron. Mater. 9, 569 (1980).Google Scholar
|6| Winters, H.F., Coburn, J.W., and Chuang, T.J., J. Vac. Sci. Technol. Bl, 469 (1983).Google Scholar
|7| Tu, Y.Y., Chuang, T.J., and Winters, H.F., Phys. Rev. B 23, 823 (1981).CrossRefGoogle Scholar
|8| Haring, R.A., Haring, A., Saris, F.W., and de Vries, A.E., Appl. Phys. Lett. 41, 174 (1982).Google Scholar
|9| Sanders, F.H.M., Kolfschoten, A.W., Dieleman, J., Haring, R.A., Haring, A., and de Vries, A.E., J. Vac. Sci. Technol. A2, 487 (1984).Google Scholar
|10| Steinbrüchel, Ch., Lehmann, H.W., and Frick, K., to be published.Google Scholar
|11| Steinbrüchel, Ch., J. Electrochem. Soc. 130, 648 (1983).Google Scholar
|12| Chung, P.M., Talbot, L., and Touryan, K.J., Electric Probes in Stationary and Flowing Plasmas (Springer, Heidelberg, 1975).Google Scholar
|13| The plasma potential is equal to 30 ± 10 Volt under all conditions investigated so that, to a good approximation, Ei can be identified with VCD.Google Scholar
|14| Mayer, T.M. and Barker, R.A., J. Electrochem. Soc. 129, 585 (1982).Google Scholar
|15| Harper, J.M.E., Cuomo, J.J., Leary, P.A., Summa, G.M., Kaufman, H.R., and Bresnock, F.J., J. Electrochem. Soc. 128, 1077 (1981).Google Scholar
|16| Steinbrüchel, Ch., J. Vac. Sci. Technol. B2, 38 (1983).Google Scholar
|17| Heath, B.A., J. Electrochem. Soc. 129, 396 (1982).Google Scholar
|18| Mayer, T.M., Barker, R.A., and Whitman, L.J., J. Vac. Sci. Technol. 18, 349 (1981).Google Scholar
|19| Winters, H.F., J. Vac. Sci. Technol. Bl, 927 (1983).Google Scholar