Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T00:23:52.813Z Has data issue: false hasContentIssue false

Mechanism of Ion Exclusion by Sub-2nm Carbon Nanotube Membranes

Published online by Cambridge University Press:  01 February 2011

Francesco Fornasiero
Affiliation:
fornasiero1@llnl.gov, LLNL, CMELS, 7000 East Avenue, Livermore CA94550, Livermore, CA, 94550, United States, 925 422 0089
Hyung Gyu Park
Affiliation:
park15@llnl.gov, Lawrence Livermore National Laboratory, Engineering, 7000 East Avenue, Livermore, CA, 94550, United States
Jason K Holt
Affiliation:
holt14@llnl.gov, Lawrence Livermore National Laboratory, Chemistry Materials Earth and Life Sciences, 7000 East Avenue, Livermore, CA, 94550, United States
Michael Stadermann
Affiliation:
stadermann2@llnl.gov, Lawrence Livermore National Laboratory, Chemistry Materials Earth and Life Sciences, 7000 East Avenue, Livermore, CA, 94550, United States
Costas P Grigoropoulos
Affiliation:
cgrigoro@me.berkeley.edu, University of California at Berkeley, Mechanical Engineering, Berkeley, CA, 94720, United States
Alexandr Noy
Affiliation:
noy1@llnl.gov, Lawrence Livermore National Laboratory, Chemistry Materials Earth and Life Sciences, 7000 East Avenue, Livermore, CA, 94550, United States
Olgica Bakajin
Affiliation:
bakajin1@llnl.gov, Lawrence Livermore National Laboratory, Chemistry Materials Earth and Life Sciences, 7000 East Avenue, Livermore, CA, 94550, United States
Get access

Abstract

Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the salts (A=anion, C=cation, z= valence) with the greatest zA/zC ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Noy, A.; Park, H. G.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Bakajin, O.. Nano Today 2007, 2, 2229 (2007).Google Scholar
2 Hummer, G.; Rasaiah, J. C.; Noworyta, J. P.. Nature 2001, 414, 188190 (2001).10.1038/35102535Google Scholar
3 Kolesnikov, A. I.; Zanotti, J. M.; Loong, C. K.; Thiyagarajan, P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J.. Phys Rev Lett 2004, 93, 35503 (2004).Google Scholar
4 Naguib, N.; Ye, H.; Gogotsi, Y.; Yazicioglu, A. G.; Megaridis, C. M.; Yoshimura, M.. Nano Lett 2004, 4, 22372243 (2004).Google Scholar
5 Maniwa, Y.; Matsuda, K.; Kyakuno, H.; Ogasawara, S.; Hibi, T.; Kadowaki, H.; Suzuki, S.; Achiba, Y.; Kataura, H.. Nature Mater 2007, 6, 135141 (2007).Google Scholar
6 Mamontov, E.; Burnham, C. J.; Chen, S. H.; Moravsky, A. P.; Loong, C. K.; Souza, N. R. de; Kolesnikov, A. I.. J Chem Phys 2006, 124, 194703 (2006).10.1063/1.2194020Google Scholar
7 Corry, C.. J Phys Chem B 2008, 112, 14271434 (2008).Google Scholar
8 Joseph, S.; Aluru, N. R.. Nano Lett 2008, 8, 452458 (2008).Google Scholar
9 Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O.. Science 2006, 312, 10341037 (2006).Google Scholar
10 Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J.. Nature 2005, 438, 44–44 (2005).Google Scholar
11 Kalra, A., Garde, S. & Hummer, G. Proc Natl Acad Sci USA 2003, 100, 1017510180 (2003).Google Scholar
12 Suk, M. E.; Raghunathan, A. V.; Aluru, N. R.. AIP, 2008, p 133120.10.1063/1.2907333Google Scholar
13 Fornasiero, F.; Park, H. G.; Holt, J. K.; Stadermann, M.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O.. Proc Natl Acad Sci USA 2008, in press (2008).Google Scholar
14 Yang, D. Q.; Rochette, J. F.; Sacher, E.. Langmuir 2005, 21, 85398545 (2005).10.1021/la0514922Google Scholar
15 Li, P. H.; Lim, X. D.; Zhu, Y. W.; Yu, T.; Ong, C. K.; Shen, Z. X.; Wee, A. T. S.; Sow, C. H.. J Phys Chem B 2007, 111, 16721678 (2007).Google Scholar
16 Wong, S. S.; Woolley, A. T.; Joselevich, E.; Cheung, C. L.; Lieber, C. M.. J Am Chem Soc 1998, 120, 85578558 (1998).Google Scholar
17 Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M.. Nature 1998, 394, 5255 (1998).Google Scholar
18 Nightingale, E. R.. J Phys Chem 1959, 63, 13811387 (1959).Google Scholar
19 Carter, D. J.; Ogden, M. I.; Rohl, A. L.; Yz. Aust J Chem 2003, 56, 675678 (2003).10.1071/CH02260Google Scholar
20 Majumder, M.; Chopra, N.; Hinds, B. J.. J Am Chem Soc 2005, 127, 90629070 (2005).Google Scholar