Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T05:11:29.206Z Has data issue: false hasContentIssue false

Mechanisms of Molecular Beam Epitaxial Growth on Reconstructed Si{100}: Thermal and Energized Beams

Published online by Cambridge University Press:  28 February 2011

B. J. Garrison
Affiliation:
The Pennsylvania State University, Department of Chemistry, University Park, PA 16801
M. T. Miller
Affiliation:
The Pennsylvania State University, Department of Chemistry, University Park, PA 16801
D.W. Brenner
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
Get access

Summary:

Molecular dynamics simulations have been performed that examine the microscopic mechanisms of rearrangements of atoms on the Si{ 1001 surface due to deposition of gas phase atoms. For thermal energy deposition we find that the gas atoms initially attach to dangling bonds of the surface dimer atoms. The dimer ’unreconstruction’ is due to a diffusion event on the surface, thus is temperature activated. We also find that dimers may open in regions of the surface where there are several atoms not at lattice sites, thus a low temperature amorphous structure. For 5-10 eV deposition there are direct mechanisms of dimer opening that occur on the 50-100 fs timescale. For energies greater than 15-20 eV there is implantation of the silicon atoms which leads to subsurface damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gossmann, H.-J., Feldman, L. C. and Gibson, W. M., Surface Sci. 155, 413 (1985).Google Scholar
[2] Gossmann, H.-J. and Feldman, L. C., Phys. Rev. B32, 6 (1985).Google Scholar
[3] Schlier, R. E. and Famsworth, H. E., J. Chem. Phys. 30, 917 (1959).Google Scholar
[4] Yagi, K., Tamura, S. and Tokuyama, T., Jpn. J. Appl. Phys. 16, 245 (1977); T. Tokuyama, K. Yagi, K. Miyake, M. Tamur, N. Natsuaki and S. Tachi, Nucl. Inst. and Meth. 182/183, 241 (1981); K. Miyake and T. Tokuyama, Thin Solid Films 92, 123 (1982).CrossRefGoogle Scholar
[5] Tsukizoe, T., Nakai, T. and Ohmae, N., J. Appl. Phys. 42, 4770 (1977).CrossRefGoogle Scholar
[6] Thomas, G. E., Beckers, L. J., Vrakking, J. J. and Koning, B. R. de, J. Crystal Growth 56, 557 (1982); P. C. Zalm and L. J. Beckers, Appl. Phys. Lett. 41, 167 (1982).CrossRefGoogle Scholar
[7] Yamada, I., Inokawa, H. and Takage, T., Nucl. Inst. and Meth. B6, 439 (1985).Google Scholar
[8] Herbots, N., Appleton, B. R., Noggle, T. S., Zuhr, R. A. and Pennycock, S. J., Nucl. Inst. and Meth. B13, 250 (1986); N. Herbots, S. J. Pennycock, B. R. Appleton, T. S. Noggle and R. A. Zuhr, Proc. Symp. A. 1985 Fall MRS Meeting (December 1-4, 1985) Boston, Massachusetts; R. A. Zuhr, B. R. Appleton, N. Herbots, B. C. Larson, T. S. Noggle, and S. J. Pennycock, I. Vac. Sci.Technol. AS, 2135 (1987); B. R. Appleton, S. J. Pennycock, R. A. Zuhr, N. Herbots, and T. S. Noggle, Nuc. Inst. Meth. B19/20, 975 (1987).Google Scholar
[9] Dodson, B. W., Phys. Rev. B36 (1987) 1068.Google Scholar
[10] Gawlinski, E. T. and Gunton, J. D., Phys. Rev. B36, 4774 (1987).Google Scholar
[11] Biswas, R., Grest, G. S. and Soukoulis, C. M., Phys. Rev. B38, 8154 (1988).CrossRefGoogle Scholar
[12] Brenner, D. W. and Garrison, B. J., Surf. Sci. 198, 151 (1988).CrossRefGoogle Scholar
[13] Brenner, D. W. and Garrison, B. J., Phys. Rev. B34, 1304 (1986)Google Scholar
[14] Brenner, D. W., The modification is published in Agrawal, P. M., Raff, L. M. and Thompson, D. L. Surf. Sci. 188, 402 (1987).Google Scholar
[15] Garrison, B. J., Miller, M. T. and Brenner, D. W., Chem. Phys. Lett. 146, 553 (1988).Google Scholar