Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:12:43.671Z Has data issue: false hasContentIssue false

Mechanisms of Self-Diffusion and of Doping-Enhancement of Superlattice Disordering in GaAs and AlAs Compounds

Published online by Cambridge University Press:  26 February 2011

T.Y. Tan
Affiliation:
Also at Microelectronics Center of North Carolina, Research Triangle Park, NC 27709
U. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
Get access

Abstract

An understanding of the mechanisms of self-diffusion and of interdiffusion in the compound materials GaAs and AlAs may be arrived at byt noting the effects of (i) charge, (ii) As pressure, and (iii) point defect supersaturation, on the doping enhanced superlattice disordering phenomena. The Ga self-diffusion (and hence Ga-Al interdiffusion) is dominated by the triply-negatively-charged Ga (or Al) vacancy, , under intrinsic and n-doping conditions. Under p-doping, a positively charged Ga self-interstitial , with m not known, contributes to the Ga(AI) diffusion process. Less is known for the group V element diffusion, but the As vacancy (VAs) should be contributing under intrinsic and n-doping conditions while the As selfinterstitial (LAs) may be contributing under p-doping. The contribution of a defect pair may also be involved under p-doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For summary of results and references, see Casey, H.C., in Atomic Diffusion in Semiconductors, ed. Shaw, D. (Plenum, London, 1973) p. 351.Google Scholar
[2] Vieland, L.J., J. Phys. Chem. Solids 21, 318 (1961).CrossRefGoogle Scholar
[3] Antell, G.R., Sol.-State Electronics 8, 943 (1965).Google Scholar
[4] Young, A.B.Y. and Pearson, G.L., J. Phys. Chem. Solids 31, 517 (1970).Google Scholar
[5] Kendall, D.L. and Huggins, R.A., J. Appl. Phys. 40, 2750 (1969).CrossRefGoogle Scholar
[6] Winteler, H.R., Helvetica Physica Acta 44, 451 (1970).Google Scholar
[7] Goldstein, B., Phys. Rev. 121, 1305 (1961).Google Scholar
[8] Palfrey, H.D., Brown, M. and Willoughby, A.F.W., J. Electrochem. Soc. 128, 2224 (1981).Google Scholar
[9] Laidig, W.D., Holonyak, N. Jr, Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., App. Phys. Lett. 38, 776 (1981).Google Scholar
[10] Laidig, W.D., Lee, J.W., Chiang, P.K., Simpson, L.W., and Bedir, S.M., J. Appl. Phys. 54, 6382 (1983).CrossRefGoogle Scholar
[11] Camras, M.D., Holonyak, N. Jr, Hess, K., Ludowise, M.J., Dietze, W.T., and Lews, C.R., App. Phys. Lett. 42, 185 (1983).Google Scholar
[12] Coleman, J.J., Kapkus, P.D., Kirkpatrick, C.G., Camras, M.D., and Holonyak, N., Appl. Phys. Lett. 40, 904 (1982).Google Scholar
[13] Rao, E.V.K., Thibierge, H., Briollouet, R., Alexandre, R., and Azoulay, R., Appl. Phys. Lett. 46, 1 (1985).CrossRefGoogle Scholar
[14] Nakamura, T., Komiya, S., Inata, T., Muto, S., Hiyamizu, S., and Umebu, I., in Layered Structures and Epitaxy, eds. Gibson, J.M., Osbourn, G.C. and Tromp, R.M. (Proc. vol. 56, Mat. Res. Soc., Pittsburgh, PA, 1986) p. 339.Google Scholar
[15] Rao, E.V.K., Ossart, P., Alexandre, F., and Thibierge, H., Appl. Phys. Lett. 50, 588 (1987).Google Scholar
[16] Kawabe, M., Shimizu, N., Hasegawa, F., and Nannichi, Y., Appl. Phys. Lett. 46, 849 (1985).Google Scholar
[17] Tan, T.Y. and Gösele, U., J. Appl. Phys. 61, 1841 (1987).Google Scholar
[18] Deppe, D.G., Holonyak, N. Jr, Hsieh, K.C., Gavrilovic, P., Stutius, W., and Williams, J., Appl. Phys. Lett. 51, 581 (1987).CrossRefGoogle Scholar
[19] Tan, T.Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
[20] Tan, T.Y. and Gösele, U., Mat. Sci. Eng. B1, 47 (1988).Google Scholar
[21] Deppe, D.G., Holonyak, N. Jr., Piano, W.E., Robbins, V.M., Dallesasse, J.M., Hsieh, K.C., and Baker, J.E., J. Appl. Phys. 64, 1838 (1988).CrossRefGoogle Scholar
[22] Kobayashi, J., Nakajima, M., Fukunaga, T., Takamori, T., Ishida, K., Nakashima, H., and Ishida, K., Jpn. J. Appl. Phys. 25, L736 (1986).Google Scholar
[23] Rao, E.V.K., Duhamel, N., Favennec, P.N., and L'Haridon, H., ,J. Appl. Phys. 49, 3898 (1978).Google Scholar
[24] Elliott, K.R., Appl. Phys. Lett. 42, 274 (1983).CrossRefGoogle Scholar
[25] Chang, L.L. and Koma, A., Appl. Phys. Lett. 29, 138 (1976).CrossRefGoogle Scholar
[26] Petroff, P.M., J. Vac. Sci. Technol. 14, 973 (1977).Google Scholar
[27] Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegmann, W., and Logan, R.A., J. Appl. Phys. 51, 357 (1980).Google Scholar
[28] Cibert, J., Petroff, P.M., Werder, D.J., Pearton, S.J., Gossard, A.C., and English, J.H., Appl. Phys. Lett. 49, 223 (1986).Google Scholar
[29] Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).Google Scholar
[30] Mei, P., Yoon, H.W., Venkatesan, T., Schwarz, S.A., and Harbison, J.P., Appl. Phys. Lett. 50, 1823 (1987).Google Scholar
[31] Baraff, G.A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985).Google Scholar
[32] Mei, P., Venkatesan, T., Schwarz, S.A., Stoffel, N.G., Harbison, J.P., and Florez, L.A., in Epitaxy of Semiconductor Layered Structures ed. Tong, R.T., Dawson, L.R. and Gunshar, R.L., Mat. Res. Soc. Proc. 102 (Pittsburgh, PA, 1988) p. 161.Google Scholar
[33] Mei, P., Schwarz, S.A., Venkatesan, T., Schwartz, C.L., Bernsek, S., Stillman, G., and Temkin, H., in Mat. Res. Soc. Proc. 126 (Pittsburgh, 1988) in press.Google Scholar
[34] Pearton, S.J., Poate, J.M., Sette, F., Gibson, J.M., Jacobson, D.C., and Williams, J.S., Nucl. Instr. Meth. B19/20, 369 (1987).Google Scholar
[35] Lee, J.W. and Laidig, W.D., J. Electron. Mat. 13, 147 (1984).Google Scholar
[36] Kamata, N., Kobayashi, K., Endo, K., Susuki, T., and Misu, A., Jpn. J. Appl. Phys. 26, 1092 (1987).Google Scholar
[37] Myers, D.R., Biefeld, R.M., Fritz, I.J., Picraux, S.T., and Zipperian, T.E., Appl. Phys. Lett. 44, 1052 (1984).Google Scholar
[38] Hirayama, Y., Susuki, Y., and Okamoto, H., Jpn. J. Appl. Phys. 24, 1498 (1985).CrossRefGoogle Scholar
[39] Ralston, J., Wicks, G.W., Eastman, L.F., DeCooman, B.C., and Carter, C.B., J. Appl. Phys. 59, 120 (1986).Google Scholar
[40] Longini, R.L., Solid-State Electron. 5, 127 (1962).Google Scholar
[41] U. Gösele and Morehead, F., J. Appl. Phys. 52, 4617 (1981).Google Scholar
[42] Enquist, P., Wicks, G.W., Eastman, L.F., and Hitzman, C., J. Appl. Phys. 58, 4130 (1985).Google Scholar
[43] Kendall, D.L., in “Semiconductors and Semimetals” Vol.4, eds. Willardson, R.K. and Beer, A.C. (Academic Press, NY, 1968) p. 163.Google Scholar
[44] Tuck, B. and Houghton, A.J.N., J. Phys. D: Appl. Phys. 14, 2147 (1981).Google Scholar
[45] Park, H.H., Lee, K.H., and Stevenson, D.A., App. Phys. Lett. 53, 2299 (1888).Google Scholar
[46] Palfrey, H.D. et al., as cited by A.F.W. Willoughby, in Defects in Semiconductors L, eds. Mahajan, S. and Corbett, J.W., Mat. Res. Soc. Proc. 14 (North-Holland, NY, 1983) p. 237.Google Scholar
[47] Eisen, F.H. and Birchnell, C.E., Acta Met. 5, 265 (1957).Google Scholar
[48] Razeghi, M., Acher, O., and Launay, F., Semicond. Sci. Technol. 2, 793 (1987).Google Scholar
[49] Schwarz, S.A., Mei, P., Venkatesan, T., Bhat, R., Hwang, D.M., Schwartz, C.L., Koza, M., Nazar, L., and Skromme, B., Appl. Phys. Lett. 53, 1051 (1988).CrossRefGoogle Scholar