Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:11:13.281Z Has data issue: false hasContentIssue false

A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials

Published online by Cambridge University Press:  01 February 2011

Get access

Abstract

This paper presents a novel Membrane Deflection Fracture Experiment (MDFE) to investigate the fracture toughness of MEMS and other advanced materials in thin film form. It involves the stretching of freestanding thin-film membranes, in a fixed-fixed configuration, containing pre-existing cracks. The fracture behavior of ultrananocrystalline diamond (UNCD), a material developed at Argonne National Laboratory, is investigated to illustrate the methodology. When the fracture initiates from sharp cracks, produced by indentation, the fracture toughness was found to be 4.7 MPa m1/2. When the fracture initiates from blunt notches with radii about 100 nm, machined by focused ion beam (FIB), the mean value of the apparent fracture toughness was found to be 7.2 MPa m1/2. Comparison of these two values, using the model proposed by Drory et al. [9], provides a correction factor of 2/3, which corresponds to a mean value of ρ/2x=1/2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Knott, J. F., Fundamentals of Fracture Mechanics, Butterworths, London U.K., (1973).Google Scholar
2. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, 315 (1996).Google Scholar
3. Kahn, H., Tayebi, N., Ballarini, R., Mullen, R.L., and Heuer, A.H., J. Sen. Act. 82, 274 (2000).Google Scholar
4. Ballarini, R., Mullen, R.L., Yin, Y., Kahn, H., Stemmer, S., and Heuer, A.H., J. Mat. Res. 12, 915 (1997).Google Scholar
5. Sharpe, W.N., Yuan, B., Edwards, R.L., MRS Symp. Proc. 505, 51 (1997).Google Scholar
6. Tsuchiya, T., Sakata, J., Taga, Y., MRS Symp. Proc. 505, 285 (1997).Google Scholar
7. Chasiotis, I. and Knauss, W.G., MRS Symp. Proc. 657, 221 (2001).Google Scholar
8. Chasiotis, I. and Knauss, W.G., MRS Symp. Proc. 687, 241 (2002).Google Scholar
9. Drory, M.D., Dauskardt, R.H., Kant, A., and Ritchie, R.O., J. Appl. Phy. 78, 3083 (1995).Google Scholar
10. Espinosa, H.D., Prorok, B.C., and Fischer, M., J. Mech. Phy. Sol. 51, 47 (2003).Google Scholar
11. Gruen, D.M., Ann. Rev. Mat. Sci. 29, 211 (1999).Google Scholar
12. Espinosa, H.D., Prorok, B.C., Peng, B., Kim, K.-H., Moldovan, N., Auciello, O., Carlisle, J.A., Gruen, D.M., and Mancini, D.C., J. Exp. Mech. 43, 3 (2003).Google Scholar
13. Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X., App. Phy. Let. 64, 1502 (1994).Google Scholar
14. Murakami, Y., Ed., Stress Intensity Factors Handbook, Pergamon Oxford, (1987).Google Scholar
15. Creager, M. and Paris, P.C., Int. J. Frac. Mech. 3, 247 (1967).Google Scholar