Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T21:59:51.390Z Has data issue: false hasContentIssue false

Memristive Switches with Two Switching Polarities in a Forming Free Device Structure

Published online by Cambridge University Press:  23 June 2011

Rainer Bruchhaus
Affiliation:
Peter Grünberg Institut, Forschungszentrum Jülich, 52425 Jülich, Germany and JARA – Fundamentals for Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
Christoph R. Hermes
Affiliation:
Peter Grünberg Institut, Forschungszentrum Jülich, 52425 Jülich, Germany and JARA – Fundamentals for Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
Rainer Waser
Affiliation:
Peter Grünberg Institut, Forschungszentrum Jülich, 52425 Jülich, Germany and JARA – Fundamentals for Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen, 52074 Aachen, Germany
Get access

Abstract

In this study an electroforming free device structure based on 25nm thin TiO2 thin films is presented. The TiO2 films are deposited on CMOS compatible W plugs. The use of 5nm thick interlayers of Ti and W between the TiO2 and the Pt electrode turn out to be the key step to achieve the forming free performance. In these Pt/Ti/TiO2/W or Pt/W/TiO2/W samples the switching polarity can be repeatedly changed from “eightwise” to “counter-eightwise” in one device by a proper adjustment of the I-V measurement conditions. The most simple explanation for this observation is that the switching interface can be flipped back and forth from the bottom to the top electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waser, R., Dittmann, R., Staikov, G., and Szot, K., Adv. Mater. 21, 2632 (2009).Google Scholar
2. Yang, J. J., Miao, F., Pickett, M. D., Ohlberg, D. A. A., Stewart, D. R., Lau, C. N., and Williams, R. S., Nanotechnology 20, 215201 (2009).Google Scholar
3. Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., and Williams, R. S., Nat. Nanotechnol. 3, 429 (2008).Google Scholar
4. Yang, J. J., Strachan, J. P., Miao, F., Zhang, M.-X., Pickett, M. D., Yi, W., Ohlberg, D. A. A., Medeiros-Ribeiro, G., and Williams, R. S., Appl. Phys. A, published online, 26 January 2011.Google Scholar
5. Nauenheim, C., Kügeler, C., Rüdiger, A., and Waser, R., Appl. Phys. Lett. 96, 122902 (2010).Google Scholar
6. Menke, T., Meuffels, P., Dittmann, R., Szot, K., and Waser, R., J. Appl. Phys. 105, 066104 (2009).Google Scholar
7. Menke, T., Dittmann, R., Meuffels, P., Szot, K., and Waser, R., J. Appl. Phys. 106, 114507 (2009).Google Scholar
8. Kim, K. M., Kim, G. H., Song, S. J., Seok, J. Y., lee, M. H., Yoon, J. H., and Hwang, C. S., Nanotechnology 21, 305 203 (2010).Google Scholar
9. Jeong, D. S., Schroeder, H., and Waser, R., Nanotechnology 20, 375201 (2009).Google Scholar
10. Muenstermann, R., Menke, T., Dittmann, R., and Waser, R., Adv. Mater. 22, 4819 (2010).Google Scholar