No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Present work shows that simple, standard methods of metal addition, without the need for ion implantation or other complex and expensive processes, can dramatically improve the performance of titania based structures compared to P25 for (i.e. hydrocarbon oxidation) photocatalytic reactions. In this work, Au and Pt were incorporated into titania nanotubes, and their photocatalytic activities were investigated in detail. The samples were analyzed using a JEOL FEG-2010F field emission gun scanning transmission electron microscopy (STEM) with attached Oxford Instruments' X-ray energy-dispersive spectroscopy (EDS) system and Gatan imaging filtering (GIF) system. Both high-resolution TEM (HRTEM) images and high angle annular dark-field (HAAD) images were recorded for the specimens. The performance of the samples was tested for the oxidation of acetaldehyde using a continuous flow reactor. The pure nanotube is more photoreactive than commercial P25 titania. Both Au and Pt treated nanotube samples increased the photo reactivity. The most significant result of this work is that the activity of Pt (< 1 nm) containing nanotube is more than 10 times the rate of P25, and more than 6 times the rate of the pure nanotube. However, sizes of the Au and Pt nanoparticles on the nanotube surfaces likely affected the photo-reactivity. Large size of the Au and Pt particles decreased the photo-reactivity. Specifically, the addition of platinum without formation of obvious nanoparticles on the nanotube surfaces increased the maximum activity significantly, and increased the total yield.