Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T14:23:46.455Z Has data issue: false hasContentIssue false

Metastability of Light-Induced Defects in Very Low Density of Gap States α- Si1-αCα:H Alloys

Published online by Cambridge University Press:  21 February 2011

M. Sebastiani
Affiliation:
Department of Physics, University “La Sapienza” P.le Aldo Moro 2, 00185 Rome, Italy
P. Fiorini
Affiliation:
Department of Physics, University “La Sapienza” P.le Aldo Moro 2, 00185 Rome, Italy
F. Alvarez
Affiliation:
Department of Physics, University “La Sapienza” P.le Aldo Moro 2, 00185 Rome, Italy
F. Pozzilli
Affiliation:
Department of Physics, University “La Sapienza” P.le Aldo Moro 2, 00185 Rome, Italy
O. Pulci
Affiliation:
Department of Physics, University “La Sapienza” P.le Aldo Moro 2, 00185 Rome, Italy
F. Evangelisti
Affiliation:
Department of Physics, University “La Sapienza” P.le Aldo Moro 2, 00185 Rome, Italy
Get access

Abstract

We have prepared silicon carbon alloys with Tauc's gap of 2.1 eV, low defect density (≃ 3–1015cm-3) and large photoconductivity (αPhotodark=105 in AM 1.5 illumination). On these samples light soaking induces a large number of metastable gap defects which are annealed out at 250 °C. We have studied the kinetics of defect formation varying the duration of light exposure and the light intensity. The experimental data are consistent with a bond breaking model (conversion of tail weak bonds into dangling bonds), provided that the actual occupation of tail states is taken into account.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bullot, J. and Schmidt, M.P., Phys. Stat. Sol. (b) 143, 345 (1987).Google Scholar
[2] Matsuda, A. and Tanaka, K., J. Non-Cryst. Solids 97 & 98, 1367 (1987).Google Scholar
[3] Alvarez, F., Sebastiani, M., Pozzilli, F., Fiorini, P., and Evangelisti, F., J. Appl. Phys. 71(1), 267 (1992).CrossRefGoogle Scholar
[4] Mohnng, H.D., Abel, C.D., Brüggemann, R. and Bauer, G.H., J. Non-Cryst. Solids 137&138, 847 (1991).Google Scholar
[5] Baker, S.H., Spear, W. and Gibson, R.A.G., Philos. Mag. B 62, 213 (1990).CrossRefGoogle Scholar
[6] Skumanich, A. and Amer, N.M., Appl. Phys. Lett. 52(8), 643 (1988).Google Scholar
[7] Evangelisti, F., Fiorini, P., Fortunato, G., Frova, A., Giovannella, C. and Peruzzi, R., J. Non-Cryst. Solids 55, 191 (1983).Google Scholar
[8] Isomura, M., Hata, N. and Wagner, S. in Amorphous Silicon Technology-1991 edited by Madan, A., Hamakawa, Y., Thompson, M.J., Taylor, P.C. and LeComber, P.G. (Mater. Res. Soc. Proc. 219, Anaheim, CA 1991) pp. 2732 Google Scholar
[9] Street, R.A., Physica B 170, 69 (1991).Google Scholar
[10] Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B 32, 23 (1985).Google Scholar
[11] Taylor, G.W. and Simmons, J.G., J. Non-Cryst. Solids, 8–10, 940 (1972).CrossRefGoogle Scholar
[12] Mittiga, A., Fiorini, P., Falconieri, M. and Evangelisti, F., J. Appl. Phys. 66(6), 2667 (1989).Google Scholar