No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
Knowledge about atomic scale motions is essential to the understanding of dynamical phenomena on surfaces, such as diffusion, phase transitions, and epitaxial growth. We demonstrate that the addition of a very small number of Pb atoms to a Ge(111) surface reduces the energy barrier for activated processes, thus allowing one to observe concerted atomic motions and metastable structures on this surface near room temperature using a tunneling microscope. The activation energy for surface diffusion of isolated substitutional Pb atoms in Ge(111)-c(2×8) was measured by observing individual atomic interchanges from 24°C to 79°C. We also observed the formation and annihilation of metastable structural surface excitations, which are associated with large numbers of germanium surface atoms in one row of the c(2×8) reconstruction shifting along that row like beads on an abacus. The effect provides a new mechanism for atomic transport on semiconductor surfaces and can explain a number of other observed phenomena associated with Ge(111) surfaces, including the surface diffusion of Pb atoms.