No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Laser zone texturing of nickel-plated, aluminum based magnetic media has become a preferred method of providing a precisely controlled head landing zone. The Nd:YAG lasers used for this process are not suitable for directly texturing glass substrates. A novel method has been developed which allows the use of the existing Nd:YAG laser systems to zone texture glass based magnetic media.
An amorphous sputtered film of a non-magnetic Ni alloy provides a texturing layer which absorbs the laser pulse and controllably forms regular, small protrusions. Optimization of the alloy composition results in small cone-shaped bumps. Laser power sensitivity exhibits a region of invariance for a range of film thickness. This behavior provides a wide margin for manufacture by reducing the effect of thickness variation on laser bump height.
Disks fabricated using this form of laser zone texture exhibit excellent tribology performance. TEM images show the Ni alloy to be amorphous and featureless. The sputtered film does not influence the properties of the subsequently sputter deposited isotropic magnetic films.