Published online by Cambridge University Press: 15 February 2011
In Belgium, Eurobitum intermediate-level long-lived bituminized radioactive waste containing large amounts of NaNO3, which is a hygroscopic and soluble salt, is to be disposed of in an underground repository in a geologically stable clay formation. The Boom Clay is studied as a potential host formation because of its favourable properties to limit and delay the migration of the leached radionuclides and other contaminants (heavy metals, NaNO3, organic molecules) to the biosphere. The emplacement of the bituminized waste will induce multiple processes that could have a significant effect on the key properties of the clay. Because several of these processes are interdependent, the study of the compatibility of Eurobitum with geological disposal is complex. To structure the research and to identify possible knowledge gaps, the Belgian Radioactive Waste Management Agency ONDRAF/NIRAS developed a new methodology based on safety functions and safety statements. In this paper, this methodology is briefly explained, with reference to the disposal of Eurobitum. Experimental results obtained at the Belgian Nuclear Research Centre SCK•CEN are presented and discussed in the light of the safety functions and safety statements approach. The importance of the interdependence of the processes is highlighted. Special attention is given to the evolution of the disposal design as a result of the improved understanding of key processes.