Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-05T21:19:26.682Z Has data issue: false hasContentIssue false

Microcavity Effects in The Luminescence of GaAs Microcrystals

Published online by Cambridge University Press:  28 February 2011

S. Juen
Affiliation:
Institute of Experimental Physics, University of Innsbruck, Technikerstr. 25/4, A-6020 Innsbruck, AUSTRIA.
K. F. Lamprecht
Affiliation:
Institute of Experimental Physics, University of Innsbruck, Technikerstr. 25/4, A-6020 Innsbruck, AUSTRIA.
R. Rodrigues
Affiliation:
Institute of Experimental Physics, University of Innsbruck, Technikerstr. 25/4, A-6020 Innsbruck, AUSTRIA.
R. A. Höpfel
Affiliation:
Institute of Experimental Physics, University of Innsbruck, Technikerstr. 25/4, A-6020 Innsbruck, AUSTRIA.
Get access

Abstract

Experimental photoluminescence spectra of GaAs microcrystals show pronounced variations compared to the luminescence of bulk GaAs. The observed spectra are explained by spectral enhancement and inhibition of spontaneous emission in a three-dimensional optical resonator formed by a dielectrically confined semiconductor microcrystal. The crystals were produced by pulverization of bulk GaAs, size-separated by sedimentation techniques, and characterized by transmission electron microscopy, electron diffraction and x-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamamoto, Y., Machida, S., Igeta, K., Björk, G., in Coherence, Amplification, and Quantum Effects in Semiconductor Lasers, edited by Yamamoto, Y. (Wiley, NewYork, 1991).Google Scholar
2. Schubert, E. F., Wang, Y.-H., Cho, A. Y., Tu, L.-W., Zydzik, G. J., Appl. Phys. Lett. 60, 921 (1992).Google Scholar
3. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J., Logan, R. A., Appl. Phys. Lett. 60, 289 (1992).Google Scholar
4. De Martini, F., Jacobovitz, G. R., Phys. Rev. Lett. 60, 1711 (1988).Google Scholar
5. Baba, T., Hamano, T., Koyama, F., Iga, K., IEEE J. Quantum Electron. 28, 1310 (1992).Google Scholar
6. Dotsenko, A. V., Kuchinskii, S. A., Onushchenko, A. A., Petrovskii, G. T., Yu Potekhina, I., Sov. Phys. Dokl. 35, 164 (1990).Google Scholar
7. Juen, S., Überbacher, K., Baldauf, J., Lamprecht, K.F., Tessadri, R., Lackner, R., Höpfel, R. A., Superlattices&Microstructures 11, 181 (1992).Google Scholar
8. Thompson, G. H. B., Kirkby, P. A., Whiteway, J. E. A., IEEE J. Quantum Electron. 11, 481 (1975).Google Scholar
9. Lamprecht, K. F., Juen, S., Palmetshofer, L., Höpfel, R. A., Appl. Phys. Lett. 59, 926 (1991).Google Scholar