Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T00:07:21.970Z Has data issue: false hasContentIssue false

Micromagnetics of Nanocrystalline Permanent Magnets

Published online by Cambridge University Press:  21 February 2011

T. Schrefl
Affiliation:
Institute of Applied and Technical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A- 1040 Vienna, Austria, schrefl@email.tuwien.ac.at
J. Fidler
Affiliation:
Institute of Applied and Technical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A- 1040 Vienna, Austria
Get access

Abstract

Micromagnetic finite element calculations provide the theoretical limits for the remanence, the coercive field, and the coercive squareness of nanocomposite Nd2Fe14B/α-Fe,Fe3B,Fe23B6magnets. The influence of the intrinsic magnetic properties and the microstructure were investigated using an energy minimization technique. The coercive field reaches a maximum as a function of the average grain size at about 15 nm - 20 nm. The replacement of α-Fe with Fe3B improves the coercive field but deteriorates the loop shape. The reduction of the magnetization and the exchange constant in the soft magnetic Fe3B phase by 20% improves the coercive field without a significant loss in the remanence. An increase of the hard phase anisotropy by 8% enhances the coercive field by more the 100 kA/m in two-phase α-Fe/Nd2Fe14B and by 60 kA/m in two-phase Fe3B/Nd2Fe14B magnets. Dynamic simulations for magnetostatically interacting particles of a bonded magnet show a slight influence of the particle arrangement on magnetization reversal. The interaction field in the range of 100 kA/m to 200 kA/m rapidly decreases the distance from the particle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCallum, R. W., Kadin, A. M., Clemente, G. B., and Keem, J. E., J. Appl. Phys. 61, p. 35773579 (1987).Google Scholar
2. Hadjipanayis, G. C. and Gong, W., J. Appl. Phys. 64, p. 55595561 (1988).Google Scholar
3. Stoner, E. C. and Wohlfarth, E. P., Philos. Trans. R. Soc. 240, p. 599642 (1948).Google Scholar
4. Fukunga, H. and Inoue, H., Jpn. J. Appl. Phys. 31, p. 1347 (1992).Google Scholar
5. Schrefl, T., Fidler, J., and Kronmuiller, H., Phys. Rev. B 49, p. 61006110 (1994).Google Scholar
6. Griffiths, M.K., Bishop, J.E.L., Tucker, J. W., and Davies, H.A., J. Magn. Magn. Mater. 183, p. 49 (1998).Google Scholar
7. Coehoorn, R., Mooij, D. B. De, and Waard, C. De, J. Magn. Magn. Mater. 80, p. 101104 (1989).Google Scholar
8. Kneller, E. F., IEEE Trans. Magn. 27, p. 35883600 (1991).Google Scholar
9. Kanekiyo, H. and Hirosawa, S., J. Appl. Phys. 83, p. 62656267 (1998).Google Scholar
10. Bachmann, M., Fischer, R., and Kronmuiller, H., in Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, edited by Schultz, L., MUller, K.-H. (Werkstoff-Informationsgesellschaft, Dresden, 1998), p. 217236.Google Scholar
11. Kuma, J., Kitajima, N., Kanai, Y., and Fukunaga, H., J. Appl. Phys. 83, p. 66236625 (1998).Google Scholar
12. Schrefl, T. and Fidler, J., J. Magn. Magn. Mater. 177, p. 970975 (1998).Google Scholar
13. Hirosawa, S., Kanekiyo, H., and Uehara, M., J. Appl. Phys. 73, p. 64886490 (1993).Google Scholar
14. Smith, P. A. I., O'Sullivan, J. F., and Coey, J. M. D., in Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, edited by Schultz, L., Mtiller, K.-H. (Werkstoff-Informationsgesellschaft, Dresden, 1998), p. 205214.Google Scholar
15. Brown, W.F. Jr., Micromagnetics, Wiley, New York, 1963.Google Scholar
16. Schrefl, T., Fidler, J., Kirk, K. J., and Chapman, J. N., IEEE Trans. Magn. 33, p. 41824184 (1997).Google Scholar
17. Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y., and Hirosawa, S., J. Appl. Phys. 57, p. 40944096 (1985).Google Scholar
18. Hirosawa, S., Matsuura, Y., Yamamoto, H., Fujimura, S., and Sagawa, M., J. Appl. Phys. 59, p. 873 (1986).Google Scholar
19. Coene, W., Hakkens, F., Coehoorn, R., Mooij, D. B. de, Waard, C. de, Fidler, J., and Grössinger, R., J. Magn. Magn. Mater. 96, p. 189196 (1991).Google Scholar