No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
We have carried out a TEM investigation of the micromechanisms of deformation in these nanoporous gold specimens after compression testing. We find that the nanoporous specimens show deformation localised to the nodes between the ligaments of the foamed structure, with very high densities of microtwins and Shockley partial dislocations in these regions. These deformation structures are very different from those seen after solid nanowires are tested in compression, which show very low dislocation densities and a few sparsely distributed twins. However, similar dislocation structures to those found in the nanoporous specimens are observed in the larger nanowires when they are deformed in bending. The currently accepted model for the deformation of nanoporous gold, implicitly assumes that the deformation of these structures is by bending near the nodes where ligaments intersect. We hypothesis that the much higher dislocation densities seen in both the nanoporous gold and the nanowires deformed in bending are evidence for the presence of geometrically necessary dislocations in these deformed structures.