Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T21:27:39.108Z Has data issue: false hasContentIssue false

Micropillar Compression Deformation of Fe-Zn Intermetallic Compounds in the Coating Layer of Galvannealed Steel

Published online by Cambridge University Press:  25 January 2013

Norihiko L. Okamoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Daisuke Kashioka
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

The deformation behavior of two of the five Fe-Zn intermetallic phases (Γ, Γ1, δ1k, δ1p and ζ), which are formed in the coating layer of galvannealed steel, has been investigated through uniaxial compression tests for single-phase polycrystalline micropillars. The ζ phase is ductile to some extent while the Γ1 phase is brittle. These results are consistent with the Peierls stress estimated from the crystal structures by assuming the primitive Peierls-Nabarro model.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Villars, P., Pearson's Handbook: Crystallographic Data for Intermetallic Phases (ASM International, Amsterdam, 1997).Google Scholar
Mackowiak, J. and Short, N. R., Inter. Metals Rev. 24, 1 (1979).Google Scholar
Marder, A. R., Prog. Mater Sci. 45, 191 (2000).10.1016/S0079-6425(98)00006-1CrossRefGoogle Scholar
Ghoniem, M. A. and Lohberg, K., Metall 26, 1026 (1972).Google Scholar
Bastin, G. F., Vanloo, F. J. J., and Rieck, G. D., Z. Metallkd. 65, 656 (1974).Google Scholar
Gellings, P. J., Willemdebree, E., and Gierman, G., Z. Metallkd. 70, 312 (1979).Google Scholar
Jordan, C. E. and Marder, A. R., J. Mater. Sci. 32, 5593 (1997).CrossRefGoogle Scholar
Dimiduk, D. M., Uchic, M. D., and Parthasarathy, T. A., Acta Mater. 53, 4065 (2005).CrossRefGoogle Scholar
Uchic, M. D., Shade, P. A., and Dimiduk, D. M., Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
Greer, J. R. and De Hosson, J. T. M., Prog. Mater Sci. 56, 654 (2011).10.1016/j.pmatsci.2011.01.005CrossRefGoogle Scholar
Hong, M. H. and Saka, H., Philos. Mag. A 74, 509 (1996).CrossRefGoogle Scholar
Belin, C. H. E. and Belin, R. C. H., J. Solid State Chem. 151, 85 (2000).CrossRefGoogle Scholar
Koster, A. S. and Schoone, J. C., Acta Crystallogr. Sect. B: Struct. Sci. 37, 1905 (1981).10.1107/S056774088100753XCrossRefGoogle Scholar
Hong, M. H. and Saka, H., Scripta Mater. 36, 1423 (1997).CrossRefGoogle Scholar
Belin, R., Tillard, M., and Monconduit, L., Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 56, 267 (2000).CrossRefGoogle Scholar
Gellings, P. J., Willemdebree, E., and Gierman, G., Z. Metallkd. 70, 315 (1979).Google Scholar
Peierls, R., Proc. Phys. Soc. 52, 34 (1940).10.1088/0959-5309/52/1/305CrossRefGoogle Scholar
Nabarro, F. R. N., Proc. Phys. Soc. 52, 90 (1940).10.1088/0959-5309/52/1/313CrossRefGoogle Scholar
Brandon, J. K., Brizard, R. Y., Chieh, P. C., Mcmillan, R. K., and Pearson, W. B., Acta Crystallogr. Sect. B: Struct. Sci. 30, 1412 (1974).10.1107/S0567740874004997CrossRefGoogle Scholar
Kohlhaas, R., Dunner, P., and Schmitzp, .N, Z. Angew. Phy 23, 245 (1967).Google Scholar
Inomoto, M., Okamoto, N. L., and Inui, H., Mater. Res. Soc. Symp. Proc. submitted.Google Scholar
von Mises, R, Z. Angew. Math. Mech. 8, 161 (1928).10.1002/zamm.19280080302CrossRefGoogle Scholar
Groves, G. W. and Kelly, A., Philos. Mag. 8, 877 (1963).CrossRefGoogle Scholar