Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:18:17.980Z Has data issue: false hasContentIssue false

Microscopic and Theoretical Investigations of the Si-SiO2 Interface

Published online by Cambridge University Press:  10 February 2011

G. Duscher
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN, USA Vanderbilt University, Department of Physics & Astronomy, Nashville, TN, USA
R. Buzcko
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN, USA Vanderbilt University, Department of Physics & Astronomy, Nashville, TN, USA
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN, USA Vanderbilt University, Department of Physics & Astronomy, Nashville, TN, USA
S. T. Pantelides
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN, USA Vanderbilt University, Department of Physics & Astronomy, Nashville, TN, USA
H. Müllejans
Affiliation:
Max-Planck Institut für Metallforschung, Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck Institut für Metallforschung, Stuttgart, Germany
Get access

Abstract

Z-contrast imaging and electron energy-loss spectroscopy with a spatial resolution at the atomic scale provide evidence of an atomically abrupt Si-SiO2, interface. Th micrographs revealed no indication for an interface layer of crystalline oxide at this thermally grown interface. Theoretical ab-initio calculations of two different interface structures showed that even in the most ideal interface the local density of states extends into the region of the oxide band gap. The O-K energy-loss near-edge structure was simulated for both interface models. The comparison of theoretical and experimental results of the O-K near-edge structure agreed and showed that states below the conduction band of the oxide are caused by the dimer-like SiO-Si bridges present in all structural models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ourmazd, A., Taylor, D. W., Rentschler, J. A., and Bevk, J., Phy. Rev. Lett 59 (1987) 213.Google Scholar
2.Pasquarello, A., Hybertsen, M. S., Car, R., Phys. Rev. B 53 (1995) 10942.Google Scholar
3.Pasquarello, A., Hybertsen, M. S., Car, R., Nature 396 (1998) 58Google Scholar
4.Buzcko, R. et al. , Phys. Rev. Lett. in press.Google Scholar
5.Demkov, A. A. and Sankey, O. F., Phys Rev. Lett. 83 (1999) 2038.Google Scholar
6.Pennycook, S. J. and Boatner, L. A, Nature 366 (1988) 565.Google Scholar
7.Nellist, P. D. and Pennycook, S. J., Ultramicroscop 78 (1999) 111.Google Scholar
8.Chisholm, M. F. and Pennycook, S. J., MRS Bulletin 22 (1997) 53.Google Scholar
9.Pennycook, S. J. and Nellist, P. D., Impact of Electron and Scanning Probe Microscopyc Materials Research, edited by Rickerby, D.G. et al. (Kluwer Academic Publisher, Netherlands 1999) p.161.Google Scholar
10.Duscher, G., Browning, N. D. and Pennycook, S. J., phys. stat. sol. a 166 (1998) 327.Google Scholar
11.Pennycook, Stephen J., J. Microscopy 123 (1981) 15.Google Scholar
12.Müllejans, H. and Bruley, J., Ultramicroscopy 53, 351 (1994).Google Scholar
13.Kresse, G. and Hafner, J., Phys. Rev. B 47, RC558 (1993); G. Kresse and J. Furthminiller, Comput. Mat. Sci. 6, 15-50 (1996); G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).Google Scholar
14.Buzko, R. et al. this proceedings.Google Scholar
15.Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., and Timp, G.Nature 399 (1999) 758.Google Scholar