Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:01:56.260Z Has data issue: false hasContentIssue false

Microscopic Diffusion Mechanism of Iron in FeAl Revisited by New Methods

Published online by Cambridge University Press:  10 February 2011

G. Vogl
Affiliation:
Institut für Materialphysik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria, vogl@pap.univie.ac.at
B. Sepiol
Affiliation:
Institut für Materialphysik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
C. Czihak
Affiliation:
also at Institut Laue-Langevin, F-38042 Grenoble, France
R. Rüffer
Affiliation:
European Synchrotron Radiation Facility, F-38043 Grenoble, France
R. Weinkamer
Affiliation:
Institut für Materialphysik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
P. Fratzl
Affiliation:
now at Erich-Schmid-Institut der Österr. Akademie der Wissenschaften and Institut für Metallphysik, Montanuniversität Leoben, A-8700 Leoben, Austria
M. Fähnle
Affiliation:
now at Erich-Schmid-Institut der Österr. Akademie der Wissenschaften and Institut für Metallphysik, Montanuniversität Leoben, A-8700 Leoben, Austria
B. Meyer
Affiliation:
Max-Planck-Institut für Metallforschung, D-70569 Stuttgart, Germany
Get access

Abstract

The elementary diffusion jump of Fe atoms in the ordered intermetallic alloy FeAl is studied in a coordinated effort of atomistic experimental techniques, Monte Carlo simulation and abinitio electron theory. The experiment demands that the elementary diffusion jump is a jump into an antistructure site on the Al sublattice which is occupied for a much shorter time than the sites on the Fe sublattice. The diffusion path can be followed by Monte Carlo simulations which can perfectly explain the experiments. Since ab-initio theory yields a very low concentration of Al vacancies it is suggested that correlated jumps of two atoms prevent the creation of a fully developed Al vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Larikov, L.N., Geichenko, V.V. and Falchenko, V.M., Diffusion Processes in Ordered Alloys (Oxonian Press, New Delhi, 1981).Google Scholar
2. Eggersmann, M., Sepiol, B., Vogl, G. and Mehrer, H., Defect and Diffusion Forum 143–147 339 (1997).Google Scholar
3. Vogl, G. and Sepiol, B., Acta metall. mater. 42 3175 (1994).Google Scholar
4. Sepiol, B., Meyer, A., Vogl, G., Rüffer, R., Chumakov, A. I. and Baron, A. Q. R., Phys. Rev. Lett. 76 3220 (1996); B. Sepiol, A. Meyer, G. Vogl, H. Franz and R. Rüffer, Phys. Rev. B, to appear May 1998.Google Scholar
5. Sepiol, B., in Diffusion Mechanisms in Crystalline Materials, edited by Catlow, C.R.A., Cowern, N., Farkas, D., Mishin, Y. and Vogl, G. (Mater. Res. Soc. Proc. xxx, Pittsburgh, PA, 1998) pp. xxx–xxx.Google Scholar
6. Kohn, V. G. and Smirnov, G. V., Phys. Rev. B52 3356 (1997).Google Scholar
7. Weinkamer, R., Fratzl, P., Sepiol, B. and Vogl, G., Phys. Rev. B, submitted.Google Scholar
8. Mayer, J. and Fahnle, M., Defect and Diffusion Forum 143–147 285 (1997).Google Scholar
9. Fahnle, M., Meyer, B. and Mayer, J., submitted to Intermetallics.Google Scholar
10. Wurschum, R., Grupp, C. and Schaefer, H.-E., Phys. Rev. Lett. 75 97 (1995).Google Scholar