Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T22:59:59.082Z Has data issue: false hasContentIssue false

Microscopic Morphology of Thin Films of Phthalocyanine/Perylene Blends for Organic Solar Cell Devices

Published online by Cambridge University Press:  01 February 2011

Alexandru Vlad
Affiliation:
DICE, Universite catholique de Louvain, Louvain-la Neuve, Belgium.
Dana A. Serban
Affiliation:
DICE, Universite catholique de Louvain, Louvain-la Neuve, Belgium.
Pascal Viville
Affiliation:
SCMN, Universite de Mons-Hainaut, Mons, Belgium.
Vinciane De Cupere
Affiliation:
LCP, Universite Libre de Bruxelles, Bruxelles, Belgium.
Gael Zucchi
Affiliation:
LCP, Universite Libre de Bruxelles, Bruxelles, Belgium.
Sorin Melinte
Affiliation:
DICE, Universite catholique de Louvain, Louvain-la Neuve, Belgium.
Vincent Bayot
Affiliation:
DICE, Universite catholique de Louvain, Louvain-la Neuve, Belgium.
Roberto Lazzaroni
Affiliation:
SCMN, Universite de Mons-Hainaut, Mons, Belgium.
Yves Geerts
Affiliation:
LCP, Universite Libre de Bruxelles, Bruxelles, Belgium.
Get access

Abstract

We report on the microstructure of 2(3)-9(10)-16(17)-23(24)-tetra(2-decyltetradecyloxy)- phthalocyanine/peryleneoleylamine (PcH2/PTCDI) blends. Thin films, to be used as active layers in organic photovoltaic cells, were prepared by spin coating and spin casting of dilute toluene solutions on indium tin oxide (ITO) substrates. The morphology of the thin films has been studied using Tapping Mode (TM) atomic force microscopy (AFM), whereas Scanning Electron Microscopy (SEM) was used to reveal the various top electrode morphologies, inherent to the different film processing conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).Google Scholar
2 Peumans, P. and Forrest, S. R., Appl. Phys. Lett. 79, 126 (2001).Google Scholar
3 Hu, W. and Matsumura, M., J. Phys. D: Appl. Phys. 37, 1434 (2004).Google Scholar
4 Sariciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Science 258, 1474 (1992).Google Scholar
5 Yu, G., Gao, J., Hummelen, J. C., Wudl, F. and Heeger, A. J., Science 270, 1789 (1995).Google Scholar
6 Bach, U., Lupo, D., Compte, P., Moser, J. E., Weissörtel, F., Salback, J., Speitzer, H. and Grätzel, M., Nature 395, 583 (1998).Google Scholar
7 Grätzel, M., MRS Bulletin, 30, 23 (2005).Google Scholar
8 Levitsky, I. A., Euler, W. B., Tokranova, N., Xu, B. and Castracane, J., Appl. Phys. Lett. 85, 6245 (2004).Google Scholar
9 Milliron, D. J., Gur, I. and Alivisatos, A. P., MRS Bulletin, 30, 41 (2005).Google Scholar
10 Zucchi, G. et al., in preparation.Google Scholar