Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T11:58:33.553Z Has data issue: false hasContentIssue false

Microstructural and Mechanical Characterization of a TRIP-800 Steel Welded By Laser-CO2 Process

Published online by Cambridge University Press:  01 February 2011

G. Y. Perez-Medina
Affiliation:
Corporación Mexicana de Investigación en Materiales. Calle Ciencia y Tecnología #790, Fracc. Saltillo 400, Saltillo, Coah. México 25290.
P. Zambrano
Affiliation:
Universidad Autónoma de Nuevo León. Facultad de Ingeniería Mecánica y Eléctrica. Av. Pedro de Alba S/N. Col Ciudad Universitaria. San Nicolás de los Garza Nuevo León.
H. F. López
Affiliation:
Corporación Mexicana de Investigación en Materiales. Calle Ciencia y Tecnología #790, Fracc. Saltillo 400, Saltillo, Coah. México 25290.
F. A. Reyes-Valdés
Affiliation:
Corporación Mexicana de Investigación en Materiales. Calle Ciencia y Tecnología #790, Fracc. Saltillo 400, Saltillo, Coah. México 25290.
V. H. López-Cortés
Affiliation:
Corporación Mexicana de Investigación en Materiales. Calle Ciencia y Tecnología #790, Fracc. Saltillo 400, Saltillo, Coah. México 25290.
Get access

Abstract

This paper presents results on the impact of Laser CO2 process variables on the weldability, phase transformations and tensile properties of a TRIP800 Steel. The microstructure of this steel is comprised of ferrite, bainite and retained austenite phases. This is obtained by controlled cooling from the intercritical annealing temperature to the isothermal bainitic holding temperature. These steels have been increasingly used in the last 10 years in the automotive industry and for these materials to be used effectively; the influence of material and the CO2 laser welding process condition must be clearly understood. Hence, in this work the effect of the welding process on the resultant microstructures and on the exhibited mechanical properties is investigated. It is found that the tensile strength of welded specimens falls below 800 MPa and that the elongation becomes 15 % or lower. In turn, this clearly indicates that the implemented laser welding process leads to a reduction in the TRIP800 steel toughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. BY Kapustka, N.. Conrardy, C.. Effect of GMAW process and Material Conditions on DP 780 and TRIP 780 Welds, Welding Journal 2008.Google Scholar
2. Choi, I.D. et al. (2002), Deformation behaviour of low carbon TRIP sheet steels at high strain rates. ISIJ Int 2002; 42(12):1483–9Google Scholar
3. Gould, J. E., Lehman, L. R., Holmes, S., (1996). A design of experiments evaluation of factors affecting the RSW of high-strength steels. Proc. Sheet Metal Welding Conference VII, AWSGoogle Scholar
4. Gould, J. E., Workman, D., (1998), Fracture morphologies of RSW exhibiting hold time sensitivity behavior. Proc. Sheet Metal Welding Conference VIII, AWS Detroit S.Google Scholar
5. Li, M. V; Niebuhr, 1998. A computational model for the prediction of steel hardenability. Metallurgical and Materials Transactions 29B (6):661.Google Scholar
6. Bhadeshia, H. K. D. H; and Svensson, L-E 1993. Mathematical Modeling of Weld Phenomena, eds, H., Cerjack and Easterling, K. E., Institute of Metals, London, pp.109180.Google Scholar
7. Gould, J.E., Khurana, S.P., Li, T.; (2006), Predictions of microstructures when welding automotive AHSS; Welding Journal, AWS, May 2006, 111.Google Scholar
8. De Meyer, M., D. B.C.D. Cooman 41st MWSP Conference Proceedings, ISS, 1999, pp.483.Google Scholar
9. Perez-Medina, G.Y., Reyes-Valdés, F.A., Lopez, H. F., Structural Integrity of a Welded TRIP800 Steel Using Laser CO2 and GMAW Processes; Rivista Italiana della Saldatura N-3 2010, pp. 333338.Google Scholar