Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T20:02:09.458Z Has data issue: false hasContentIssue false

Microstructural Characterization of Dissimilar Joint: SAE1008-2340 Welded by GMAW Process

Published online by Cambridge University Press:  24 February 2014

L. L. Rodríguez López*
Affiliation:
Corporación Mexicana de Investigación en Materiales, Saltillo, Coahuila, México.
G.Y. Perez-Medina
Affiliation:
Corporación Mexicana de Investigación en Materiales, Saltillo, Coahuila, México.
L.A. Carrasco González
Affiliation:
Corporación Mexicana de Investigación en Materiales, Saltillo, Coahuila, México.
R.J. Praga Alejo
Affiliation:
Corporación Mexicana de Investigación en Materiales, Saltillo, Coahuila, México.
F.A. Reyes-Valdés
Affiliation:
Corporación Mexicana de Investigación en Materiales, Saltillo, Coahuila, México.
Get access

Abstract

Gas metal arc welding (GMAW) of a sub-frame automotive industry was studied, applying a design of experiment (DOE) in Minitab and Matlab software. Voltages, welding speed and wire feed speed was defined as input variables; legs and throats of welding were output variables in millimeters dimension. The requirement for GMAW process was to achieve complete penetration, minimum values acceptable of legs and throat indicated in AWS D8.8M:2007 “Specification for automotive weld quality-arc welding” without any discontinuity, like undercutting or porosity. The required of quality were difficult to achieve due to the materials have microstructural and mechanical properties different, the SAE 1008 has 279MPa for ultimate tensile strength (UTS) and the microstructure consist of ferrite matrix with some small areas of cementite, while SAE 2340 has 456MPa of UTS with a combination of perlite and ferrite. It was possible obtain good quality welds with proper geometry and defect free with help to design of experiment. The conditions needed were a combination of parameters to not obtained significant change microestructural characterized by optical microscopy, stereoscopy and scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kuziak, R., Kawalla, R., Waengler, S., Archives Of Civil And Mechanical Engineering, 8, 103 (2008).CrossRefGoogle Scholar
Chiaberge, M., New Trends and Developments in Automotive Industry, 1 st Edition, 365394 (2011).Google Scholar
Kou, S., Welding Metallurgy, 2 nd Edition, 1922, (2003).Google Scholar
Miller Electric Mfg. Co., Guidelines for Gas Metal Arc Welding (GMAW), 154 557 A, 117 (2007).Google Scholar
Vander Voort, G.F., ASM Handbook: Metallography and microstructures, 9, 101126, 487-513 (1992).Google Scholar
DeGarmo, E. P., Black, J. T., Kohser, R. A., Materiales y procesos de fabricación, 1, 941 (1994).Google Scholar
Villacencio, J.C., Tesis: Relación, microestructura/propiedad en la soldadura GTAW entre aceros inoxidables y aceros al carbono, (2010).Google Scholar
Fernandez, D.A., Tesis: Soldadura de aceros complejos termogalvanizados, (2005).Google Scholar
Thewlis, G., Materials Science and Technology, 20, 143160 (2004).CrossRefGoogle Scholar
Mohandasa, T., Reddya, G. Madhusudan, Kumarb, B. Satish, Journal of Materials Processing Technology, 88, 284294 (1999).CrossRefGoogle Scholar