No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
The TiAl-based (Ti-46Al-7Nb-1.5Cr (at%)) intermetallic alloy was tensile tested in vacuum and air as a function of temperature to investigate microstructural effect on the moisture-induced embrittlement. The reduction in tensile strength (or elongation) due to testing in air diminishes as testing temperature increases. From the fracture strength (or elongation)-temperature curves, it was found that the near gamma grain microstructure was most resistant, and the dual-phase microstructure most susceptible to moisture-induced embrittlement. Also, the moisture-induced embrittlement of the TiAl-based intermetallic alloy with fully lamellar microstructure depends on the lamellar spacing, and reduced with decreasing lamellar spacing.