Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T10:30:43.180Z Has data issue: false hasContentIssue false

Microstructural, Optical and Electrical Properties Of Post-Annealed ZnO:Al Thin Films

Published online by Cambridge University Press:  14 February 2012

Coralie Charpentier
Affiliation:
TOTAL S.A., Gas & Power R&D Division Tour Lafayette, 2 place des Vosges La Défense 6, 92400 Courbevoie, France. LPICM-CNRS, Laboratoire de Physique des Interfaces et Couches Minces, Ecole Polytechnique, 91128 Palaiseau, France.
Patricia Prod’Homme
Affiliation:
TOTAL S.A., Gas & Power R&D Division Tour Lafayette, 2 place des Vosges La Défense 6, 92400 Courbevoie, France.
Loïc Francke
Affiliation:
TOTAL S.A., Gas & Power R&D Division Tour Lafayette, 2 place des Vosges La Défense 6, 92400 Courbevoie, France.
Pere Roca i Cabarrocas
Affiliation:
LPICM-CNRS, Laboratoire de Physique des Interfaces et Couches Minces, Ecole Polytechnique, 91128 Palaiseau, France.
Get access

Abstract

Aluminum-doped zinc oxide (ZnO:Al) thin films were prepared on glass substrates by radio frequency (RF) magnetron sputtering from a ceramic mixed target ZnO:Al2O3 (1 wt.%) with a power of 250 W. Two series of samples were deposited at room temperature, the first one in pure Ar atmosphere, the second one in Ar/O2 gas mixture. Effects of post-deposition annealing treatments carried out from 400 °C to 500 °C under vacuum and in N2/H2 (5%) atmosphere have been investigated. The influence of these parameters was studied by a detailed microstructural analysis using X-Ray diffraction and Raman spectroscopy. For N2/H2 annealing process, the increase of charge carrier concentration limits the increase of the mobility while after vacuum annealing, an improvement of both electrical and optical properties was observed. The increase of the crystallinity and grain size for ZnO:Al films deposited in Ar/O2 gas mixture could explain their improvements. Resistivity was reduced down to 3.5×10-4 Ω.cm, for a mobility of 49 cm2/V.s with a vacuum annealing at 450 °C for ZnO:Al deposited in Ar/O2 gas mixture.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rech, B., Repmann, T., Van Den Donker, M.N., Berginski, M., Kilper, T., Hüpkes, J., Calnan, S., Stiebig, H., and Wieder, S., Thin Solid Films 511, 548 (2006).Google Scholar
2. Beyer, W., Hüpkes, J., and Stiebig, H., Thin Solid Films 516, 147 (2007).Google Scholar
3. Springer, J., Rech, B., Reetz, W., Muller, J., and Vanecek, M., Sol. Energy Mater. Sol. Cells 85, 1 (2005).Google Scholar
4. Müller, J., Rech, B., Springer, J., and Vanecek, M., Sol. Energy 77, 917 (2004).Google Scholar
5. Wen, R., Wang, L., Wang, X., Yue, G.H., Chen, Y. and Peng, D.L., J. Alloys Compd. 508, 370 (2010).Google Scholar
6. Singh, S., Srinivasa, R.S., and Major, S.S., Thin Solid Films 515, 8718 (2007).Google Scholar
7. Van De Walle, C., Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
8. Zhu, B.L., Wang, J., Zhu, S.J., Wu, J., Wu, R., Zeng, D. W., and Xie, C.S., Thin Solid Films 519, 3809 (2011).Google Scholar
9. Oh, B.Y., Jeong, M.C., Kim, D.S., Lee, W. and Myoung, J.M., J. Cryst. Growth 281, 475 (2005).Google Scholar
10. Lennon, C., Tapia, R.B., Kodama, R., Chang, Y., Sivananthan, S. and Deshpande, M., J. Electron. Mat. 38, 1568 (2009).Google Scholar
11. Tark, S.J., Kang, M.G., Park, S., Jang, J.H., Lee, J.C., Kim, W.M., Lee, J.S. and Kim, D.., Curr. Appl. Phys. 9, 1318 (2009).Google Scholar
12. Duenow, J.N., Gessert, T.A., Wood, D.M., Young, D.L., and Coutts, T.J., J. Non-Cryst. Solids 354, 2787 (2008).Google Scholar
13. Ellmer, K., J. Phys.D.:Appl. Phys. 33, 17 (2000).Google Scholar
14. Kim, Y., Lee, W., Jung, D.R., Kim, J., Nam, S., Kim, H., and Park, B., Appl. Phys. Lett. 96, 171902 (2010).Google Scholar
15. Ruske, F., Roczen, M., Lee, K., Wimmer, M., Gall, S., Hüpkes, J., Hrunski, D., and Rech, B., J. Appl. Phys. 107, 013708 (2010).Google Scholar
16. Ben Ayadi, Z., El Mir, L., Djessas, K., Alaya, S., Thin solid films 517, 6307 (2009)Google Scholar
17. Yang, W., Wu, Z., Liu, Z., Pang, A., Tu, Y.L., and Feng, Z.C., Thin Solid Films 519, 31 (2010).Google Scholar
18. Charpentier, C., Prod’homme, P., Maurin, I., Chaigneau, M. and Roca i Cabarrocas, P., EPJ Photovoltaics 2, 25002 (2011)Google Scholar
19. Bellingham, J.R., Phillips, W.A., Adkins, C.J., J. Mater. Sci. Lett. 11, 263 (1992).Google Scholar
20. Minami, T., MRS Bull. 25, 38 (2000).Google Scholar
21. Ellmer, K., J.Phys.D 34, 3097 (2001).Google Scholar