Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:10:55.319Z Has data issue: false hasContentIssue false

Microstructure and Magnetic Properties of Fe(C) and Fe(O) Nanoparticles

Published online by Cambridge University Press:  17 March 2011

Xiang-Cheng Sun
Affiliation:
Prog. Molecular Engineer, Instituto Mexicano del Petróleo (IMP), Central Lázaro Cárdenas 152, 07730, D. F. México
N. Nava
Affiliation:
Prog. Molecular Engineer, Instituto Mexicano del Petróleo (IMP), Central Lázaro Cárdenas 152, 07730, D. F. México
J. Reyes-Gasga
Affiliation:
Institute of Physics, National University of Mexico, D.F. México
Get access

Abstract

Two types of iron (Fe) nanoparticles, carbon-coated Fe nanoparticles (Fe(C)) and pure α-Fe nanoparticles that coated with oxide layers (Fe(O)), have been successfully synthesized using modified graphite arc-discharge method. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HREM) and electron diffraction (SAED) analysis have been used to characterize these distinct structural morphologies. It is indicated that those two Fe nanoparticles have an average grain size of 15-20nm. The presence of carbon encapsulated α-Fe, γ-Fe and Fe3C phases are clearly identified by X-ray diffraction and SAED patterns in those Fe(C) particles. However, the evidence of pure α-Fe nanocrystal coated with oxide layer is also revealed by HR-TEM images and SAED patterns in these Fe(O) particles.

Mössbauer spectra and hyperfine magnetic fields at room temperature for the assemblies of Fe(C) and Fe(O) nanoparticles further confirm their distinct nanophases that detected by XRD analysis and HRTEM observation. Specially, the assemblies of Fe(O) nanoparticles exhibit ferromagnetic properties at room temperature due to the stronger interparticle interaction and bigger magnetocrystalline anisotropy effects among these Fe(O) nanoparticles. Moreover, modified superparamagnetic relaxation is observed in the assemblies of Fe(C) nanoparticles, which is attributed to the nanocrystalline nature of the carbon-coated nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leslie-Pelecky, D. L. and Rieke, R.D., Chem. Mater. 8, 1770 (1996).Google Scholar
2. Dorman, J. L. and Fiorani, D., (Eds.), Magnetic Properties of Fine Particles, (North-Holland, Amsterdam. 1992).Google Scholar
3. Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., O'Horo, M. P., Ganguly, B. N., Mehrotra, V., Russell, M.W. and Hufman, D.R., Science 257, 219 (1992).Google Scholar
4. Awschalom, D. D. and DiVicenzo, D. P., Phys. Today 4, 43 (1995).Google Scholar
5. McMichael, R. D., Shull, R. D., Swartzendruder, L. J., Bennett, L. H. and Wastson, R. E., J. Magn. Magn. Mater. 111, 29 (1992).Google Scholar
6. Chen, Q. and Zhang, Z. J., Appl. Phys. Lett. 73, 3156 (1998).Google Scholar
7. Zhang, X. X., Tejata, J., Hernandez, J. M. and Ziolo, R. F., Nanostruct. Mater. 9, 301 (1197).Google Scholar
8. Gangopadhyay, S. and Hadjipanayis, G. C., J. Appl. Phys. 73, 6964 (1993).Google Scholar
9. Hihara, T., Onodera, H., Sumiyama, K., Suzuki, K., Kasuya, A., Hishina, Y., Satio, Y., Yoshikawa, T. and Okuda, M., Jpn. J. Appl. Phys. 33, L24 (1994).Google Scholar
10. McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M. and Staley, S. W., Phys. Rev. B49, 1135 (1994).Google Scholar
11. Dravid, V. P., Host, J. J., Teng, M. H., Elliott, D., Hwang, J., Johnson, D. L., Mason, T. O. and Weertman, J. R., Nature 374, 620 (1995).Google Scholar
12. Jonsson, T., Svedlindh, P. and Hansen, M. F., Phys. Rev. Lett. 81, 3976 (1998).Google Scholar
13. Hanson, M., Johansson, C., Pederson, M. S. and Morup, S., J. Phys: Conden. Matter. 7, 9269 (1995).Google Scholar
14. Fiorani, D., Dorman, J. L., Cherkaoui, R., Tronc, E., Lucari, F., D'Orazio, F., Spinu, L., Nogues, M., Garcia, A. and Testa, A. M., J. Magn. Magn. Mater. 196, 143 (1999).Google Scholar
15. Fourgerot, F., Chevalier, B. and Etourneau, J., Physica B, 230/232, 256 (1997).Google Scholar
16. Dong, X. L., Zhang, Z. D., Xiao, Q. F., Zhao, X. G., Chung, Y. C., Jin, S. R., Sun, W. M., Lin, Z. J., Zhang, Z. X. and Yang, H., J.Mater.Sci. 33, 1915 (1998).Google Scholar
17. Sun, X. C., Gutierrez, A., Yacaman, M. J., Dong, X. L. and Jin, S. R., Mater. Sci. Eng. A286, 157 (2000).Google Scholar
18. Sun, X. C., Dong, X. L. and Toledo, J. A., J. Nanosci. Nanotech. 1, 291 (2001).Google Scholar
19. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A. and Nishina, Y., J. Phys. Chem. Solids, 54, 1849 (1993).Google Scholar
20. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A. and Nishina, Y., Chem. Phys. Lett. 212, 379 (1993).Google Scholar
21. Bi, X. X., Ganguly, B., Huffman, G. P., Huggins, F. E., Endo, M. and Eklund, P. C., J. Mater. Res. 8, 1666 (1993).Google Scholar
22. Zhang, H., J. Phys. Chem. Solid, 60, 1845 (1999).Google Scholar
23. Rechenberg, H. R., Coaquira, J. A. H., Marquina, C., Landa, B. G., Ibarra, M. R., Benito, A. M., Naser, W., Munoz, E. and Martinez, M. T., J. Magn. Magn. Mater. 226–230, 1930 (2001).Google Scholar
24. Varanda, L. C., Jafelicci, M. J. and Goya, G. F., J. Magn. Magn. Mater. 226–230, 1933 (2001).Google Scholar
25. Vijayakumar, R.. Koltypin, Y., Felner, I. and Gedanken, A., Mater. Sci. Eng. A286, 101 (2000).Google Scholar