Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T16:50:32.707Z Has data issue: false hasContentIssue false

Microstructure and Strain-Free Lattice Parameters of ScGaN Films

Published online by Cambridge University Press:  01 February 2011

Michelle Anna Moram
Affiliation:
mam65@cam.ac.uk, University of Cambridge, Dept. Materials Science & Metallurgy, Pembroke St, Cambridge, N/A, CB2 3QZ, United Kingdom, 44 7765780182, 44 1223 334373
Timothy B Joyce
Affiliation:
t.joyce@liverpool.ac.uk, University of Liverpool, Dept. Engineering, United Kingdom
Paul R Chalker
Affiliation:
pchalker@liverpool.ac.uk, University of Liverpool, Dept. Engineering, United Kingdom
Zoe H Barber
Affiliation:
zb10@cam.ac.uk, University of Cambridge, Dept. Materials Science & Metallurgy, United Kingdom
Colin J Humphreys
Affiliation:
colin.humphreys@msm.cam.ac.uk, University of Cambridge, Dept. Materials Science & Metallurgy, United Kingdom
Get access

Abstract

Epitaxial ScxGa1-xN films of low Sc concentration (x = 0.08 ± 0.01) were deposited on MOCVD-grown GaN films (using an Al2O3 substrate) at 800°C using molecular beam epitaxy employing ammonia as a reactive nitrogen source (NH3-MBE). The strain-free lattice parameters of the films were determined using a method based on high-resolution X-ray diffraction (HRXRD) in conjunction with an in-situ elastic tester. It is found that the c:a lattice parameter ratio increases slightly and that the Poisson’s ratio decreases with increasing Sc concentration. The crystalline quality and long-range ordering of the ScxGa1-xN films (as indicated by HRXRD peak intensities and full width at half maximum values) is improved considerably relative to the GaN template. Our results indicate that threading dislocations do not propagate effectively into the ScxGa1-xN films and that these may therefore potentially find application as dislocation blocking layers in GaN-based optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Muth, J. F., Lee, J. H., Shmagin, I. K., Kolbas, R. M., Casey, H. C. Jr., Keller, B. P., Mishra, U. K., DenBaars, S. P., Appl. Phys. Lett. 71, 2572 (1997)CrossRefGoogle Scholar
2. Gall, D., Petrov, I., Madsen, L. D., Sundgren, J.-E., Greene, J. E., J. Vac. Sci. Technol. A 16, 2411 (1998)CrossRefGoogle Scholar
3. Al-Brithen, Hamad A. H., Smith, Arthur R., Gall, Daniel, Phys. Rev. B. 70, 045303 (2004)Google Scholar
4. Little, M. E., Kordesch, M. E., Appl. Phys. Lett. 78, 2891 (2001)Google Scholar
5. Moreno-Armentera, Maria Guadalupe, Mancera, Luis, Takeuchi, Noboru, phys stat. sol. (b) 238, 127 (2003)CrossRefGoogle Scholar
6. Ranjan, V., Bellaiche, L., Walter, Eric J., Phys. Rev. Lett. 90, 257602 (2003)CrossRefGoogle Scholar
7. Farrer, N., Bellaiche, L., Phys. Rev. B 66, 201203 (2002)CrossRefGoogle Scholar
8. Simunek, Antonin, Vackai, Jiri, Kunc, Karel, Phys. Rev. B 72, 045110 (2005)CrossRefGoogle Scholar
9. Constantin, Costel, Al-Brithen, Hamad, Haider, Muhammad B., Ingram, D., Smith, Arthur R., Mater. Res. Soc. Symp. Proc. Vol. 799, Z9.5.1 (2004)Google Scholar
10. Constantin, Costel, Al-Brithen, Hamad, Haider, Muhammad B., Ingram, D., Smith, Arthur R., Phys. Rev. B 70, 193309–1 (2004)CrossRefGoogle Scholar
11. Moram, M. A., Barber, Z. H., Vacuum (submitted)Google Scholar
12. Popovici, Galina, Kim, Wook, Botchkarev, Andrei, Tang, Haipeng, Morkoc, Hadis, Solomon, James, Appl. Phys. Lett. 71, 3385 (1997)CrossRefGoogle Scholar
13. Moram, M. A., Barber, Z. H., Humphreys, C. J., J. Appl. Phys (submitted)Google Scholar
14. Fewster, P. F., X-Ray Scattering from Semiconductors, 2nd Ed. (London: Imperial College Press, 2004), p. 194 Google Scholar
15. Cullity, B. D., Stock, S. R., Elements of X-ray diffraction, 3rd Ed. (Prentice Hall, 2001) p. 388 Google Scholar