Published online by Cambridge University Press: 01 February 2011
Epitaxial ScxGa1-xN films of low Sc concentration (x = 0.08 ± 0.01) were deposited on MOCVD-grown GaN films (using an Al2O3 substrate) at 800°C using molecular beam epitaxy employing ammonia as a reactive nitrogen source (NH3-MBE). The strain-free lattice parameters of the films were determined using a method based on high-resolution X-ray diffraction (HRXRD) in conjunction with an in-situ elastic tester. It is found that the c:a lattice parameter ratio increases slightly and that the Poisson’s ratio decreases with increasing Sc concentration. The crystalline quality and long-range ordering of the ScxGa1-xN films (as indicated by HRXRD peak intensities and full width at half maximum values) is improved considerably relative to the GaN template. Our results indicate that threading dislocations do not propagate effectively into the ScxGa1-xN films and that these may therefore potentially find application as dislocation blocking layers in GaN-based optoelectronic devices.