Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T02:23:42.726Z Has data issue: false hasContentIssue false

Microstructure and the Development of Electromigration Damage in Narrow Interconnects

Published online by Cambridge University Press:  15 February 2011

A. L. Greer
Affiliation:
University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
W. C. Shih
Affiliation:
University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

The microstructure in narrow (1.1, 1.5 and 2.1 μm) unpassivated lines of Al-4wt.% Cu is found to be ‘near-bamboo’, with Al2Cu grains being a significant feature correlated with thermal hillocking and with the development of damage on electromigration. The development of damage is shown to be closely related to the median time to failure, with its initiation being at a rate proportional to the square of the current density. The mechanisms of damage development are discussed, with particular reference to near-bamboo, two-phase microstructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cho, J. and Thompson, C.V., Appl. Phys. Lett. 54, 2577 (1989).Google Scholar
2. Cho, J. and Thompson, C.V., J. Electron. Mater. 19, 1207 (1990).CrossRefGoogle Scholar
3. Guo, Q., Whitman, C.S., Keer, L.M. and Chung, Y.-W., J. Appl. Phys. 69, 7572 (1991).CrossRefGoogle Scholar
4. Sanchez, J.E. Jr. and Morris, J.W. Jr., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J.R., Yost, F.G. and Ho, P.S. (Mater. Res. Soc. Proc. 225, Pittsburgh, PA 1991) pp. 5358.Google Scholar
5. Sanchez, J.E. Jr., McKnelly, L.T. and Morris, J.W. Jr., J. Electron. Mater. 19, 1213 (1990).Google Scholar
6. d'heurle, F.M. and Ho, P.S., in Thin Films - interdiffusion and Reactions, edited by Poate, J.M., Tu, K.N. and Mayer, J.W. (Wiley, New York 1978), pp. 243303.Google Scholar
7. Lloyd, J.R., Appl. Phys. Lett. 57, 1167 (1990).Google Scholar
8. Shih, W.C., Denton, T.C. and Greer, A.L., “A Microscopical and Statistical Study of Electromigration Damage and Failure in AI-4wt.%Cu Tracks”, in this volume.Google Scholar
9. Marcoux, P.J., Merchant, P.P., Naroditsky, V. and Rehder, W.D., Hewlett-Packard J. June 1989, 79.Google Scholar
10. Kirchheim, R. and Kaeber, U., J. Appl. Phys. 70, 172 (1991).Google Scholar
11. Willey, L.A., in Aluminum, Vol.1, edited by Horn, K.R. van (Amer. Soc. Metals, 1967), pp. 359381.Google Scholar
12. Chang, C.Y. and Vook, R.W., J. Mater. Res. 4, 1172 (1989).CrossRefGoogle Scholar
13. d&Heurle, F., Berenbaum, L. and Rosenberg, R., Trans. Metall. Soc. AIME 242, 502 (1968).Google Scholar
14. Pico, C.A. and Bonifield, T.D., J. Mater. Res. 6, 1817 (1991).Google Scholar
15. Blech, I.A. and Herring, C., Appl. Phys. Lett. 29, 131 (1976).Google Scholar
16. Ross, C.A., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J.R., Yost, F.G. and Ho, P.S. (Mater. Res. Soc. Proc. 225, Pittsburgh, PA 1991) pp. 3546.Google Scholar
17. Kirchheim, R., Acta Metall. Mater. 40, 309 (1992).CrossRefGoogle Scholar
18. Longworth, H.P. and Thompson, C.V., “Electromigration in Bicrystal Al Lines”, in this volume.Google Scholar
19. Schwarzenberger, A.P., Ross, C.A., Evetts, J.E. and Greer, A.L., J. Electron. Mater. 17, 473 (1988).Google Scholar
20. Black, J.R., IEEE Trans. Electron Devices ED–16, 338 (1969).Google Scholar
21. Shatzkes, M. and Lloyd, J.R., J. Appl. Phys. 59, 3890 (1986).Google Scholar
22. Lloyd, J.R., J. Appl. Phys. 69, 7601 (1991).Google Scholar