Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:17:19.411Z Has data issue: false hasContentIssue false

Microstructure Evolution of Selected Ferriticmartensitic Steels under Dual-Beam Irradiation

Published online by Cambridge University Press:  15 February 2011

Nelja Wanderka
Affiliation:
Hahn-Meitner-lnstitut Berlin GmbH, Glienicker Str. 100, D–14109 Berlin, Federal Republic of Germany
Eric Camus
Affiliation:
Hahn-Meitner-lnstitut Berlin GmbH, Glienicker Str. 100, D–14109 Berlin, Federal Republic of Germany
Heinrich Wollenberger
Affiliation:
Hahn-Meitner-lnstitut Berlin GmbH, Glienicker Str. 100, D–14109 Berlin, Federal Republic of Germany
Get access

Abstract

We present experimental results on the microstructure evolution of dual-beam irradiated (300 keV heavy ions plus 15 keV helium ions) ferritic-martensitic steels (Manet, DIN 1.4926, F82H mod). The helium bubble morphology as well as microchemistry of the alloys are investigated by means of transmission electron microscopy and field-ion microscopy with atom probe. The alloys were irradiated to fluences up to 50 dpa and implanted with helium up to a concentration of 1 at.% at the temperatures of 723 K and 773 K. The damage and implantation rates variied from 2.5 · 10−3 dpa/s to 2.5·10−2 dpals and from 0.5 appmls to 5 appm/s, respectively. Size and number density of helium bubbles is found to be rate dependent. Smaller implantation rates produce larger helium bubbles and smaller bubble number densities. Regions of local enrichment of alloy elements, typically 5 nm in size, containing chromium (up to 40 at.%), silicon, and nickel are detected. Number densities of helium bubbles and of regions of chromium enrichments are comparable and lie between 1023/m3 and 1024/m3. Possible extrapolation of the present ion irradiations to spallation source and fusion reactor conditions is shortly adressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Farrell, K., Lewis, M. B., and Packan, N. H., Scripta Met. 12, 1121 (1978).Google Scholar
[2] Dietz, W., private communication.Google Scholar
[3] Filges, D., Neef, R. D., Schaal, H., Tietze, A., Weber, U., Breuer, W., and Wimmer, J., ESS-report 9647T (1996).Google Scholar
[4] Klueh, R. L. and Alexander, D. J., J. Nucl. Mater. 218, 151 (1995),Google Scholar
[5] Proceedings of the International Workshop on Spallation Materials Technology, CONF-9604151, April 23–25, 1996, Oak Ridge, Tennessee, eds. Mansur, L. K. and Ullmaier, H..Google Scholar
[6] Ullmaier, H. and Carsughi, F., Nucl. Instr. and Meth. in Phys. Res. B 101,406 (1995).Google Scholar
[7] Wanderka, N. and Wahi, R. P., Appl. Surf. Sci. 76 & 77, 272 (1994).Google Scholar
[8] Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).Google Scholar
[9] Lang, R., Wagner, W., and Wollenberger, H., J. Nucl. Mater. 175, 5 (1990).Google Scholar
[10] Schroeder, H., Mat. Sci. Forum 97–99, 473 (1992).Google Scholar
[11] Trinkaus, H., Rad. Eff. 101, 91 (1986).Google Scholar
[12] Ullmaier, H. and Trinkaus, H., Mat. Sci. Forum 97–99, 451 (1992).Google Scholar
[13] Ullmaier, H., Nucl. Fusion 24 (8), (1984).Google Scholar
[14] Wanderka, N., Camus, E., Naundorf, V., Keilonat, C., Welzel, S., and Wollenberger, H., J. Nucl. Mater. 228, 77 (1996).Google Scholar
[15] Blavette, D., Menand, A., and Bostel, A., J. de Phys. (Paris), Colloque C7–11, 571 (1987).Google Scholar
[16] Haasen, P., Metall. Trans. 16A, 1173 (1985).Google Scholar
[17] Suzuki, M., Sawai, T., Maziasz, P. J., and Hishinuma, A., J. Nucl. Mater. 179–181, 718 (1991).Google Scholar
[18] Little, E. A., and Morgan, T. S., and Faulkner, R. G., Mat. Sci. Forum 97–99, 323 (1992).Google Scholar
[19] Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B., and Menand, A., Nature 363, 432 (1993).Google Scholar
[20] Cerezo, A., Godfrey, T. Y., Hyde, J. M., Sijbrandij, S. J., and Smith, G. D. W., Appl. Surf. Sci. 76 & 77, 374 (1994)Google Scholar
[21] Wollenberger, H., J. Nucl. Mater. 216, 63 (1994).Google Scholar