Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T18:50:38.027Z Has data issue: false hasContentIssue false

Microstructure of YBa2Cu3O7-δ/Ag Bilayers Grown In Situ on Step-Edge SrTiO3 Substrates

Published online by Cambridge University Press:  15 February 2011

Z. H. Gong
Affiliation:
Dept. of Physical Electronics, The Norwegian Institute of Technology, N-7034 Trondheim, Norway
J. K. Grepstad
Affiliation:
Dept. of Physical Electronics, The Norwegian Institute of Technology, N-7034 Trondheim, Norway
S. Andersen
Affiliation:
SINTEF Applied Physics, N-7034 Trondheim, Norway
A. Bardal
Affiliation:
SINTEF Applied Physics, N-7034 Trondheim, Norway
Get access

Abstract

The microstructure of YBa2Cu3O7-δ(YBCO)/Ag bilayers sputter deposited in situ on step-edge SrTiO3 (STO) substrates, was carefully examined by transmission electron microscopy (TEM). Considerable variation in the YBCO film growth morphology is found near steps, including film protrusions beyond the step edges and film growth on slopes. Lattice images recorded near steps unveil a high density of crystalline defects in the film. An increased density of defects is also found near the substrate interface for film grown on etched STO surface. However, these defects are confined to the interface region and do not propagate beyond the scale of the STO surface roughness. Comparison of TEM lattice images of YBCO(100)/Ag and YBCO(001)/Ag junctions from the same specimen unveils a distinct difference in the interfacial microstructure of those two junctions. Whereas the former exhibits a sharp crystalline interface, the latter typically features a thin ( ∼ 20 Å ) interfacial layer of amorphous material. The YBCO film morphology and the high density of defects in the step edge region uncovered in this study suggest that manufacture of reproducible and uniform YBCO/Ag (Au)/YBCO (SNS) Josephson junctions using the step-edge technique, will prove a difficult task.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Char, K., Mater. Res. Soc. Bull, 51, September (1994).Google Scholar
2. Beasley, M. R., IEEE Trans. Appl. Supercond. 5, 141 (1995).Google Scholar
3. de Gennes, P.G., Rev. Mod. Phys. 36, 225 (1964).Google Scholar
4. Dilorio, M.S., Yoshizumi, S., Yang, K-Y., Zhang, J., and Maung, M., Appl. Phys. Lett. 58, 2552 (1991).Google Scholar
5. Ono, R. H., Beall, J. A., Cromar, M. W., Harvey, T. E., Johansson, M. E., Reintsema, C. D., and Rudman, D. A., Appl. Phys. Lett. 59, 1126 (1991).Google Scholar
6. Missert, N., Harvey, T. E., Ono, R. H., and Reintsema, C. D., Appl. Phys. Lett. 63, 1690 (1993).Google Scholar
7. Meyer, B., Hollkott, J., Francke, C., Wunderlich, R., Mtiller, J., IEEE Trans. Appl. Supercond. 5, 2350 (1995).Google Scholar
8. Jia, C. L., Kabius, B., Urban, K., Herrman, K., Cui, G. J., Schubert, J., Zander, W., Braginski, A. I., and Heiden, C., Physica C 175, 545 (1991).Google Scholar
9. Sun, J. Z., Gallagher, W.J., Callegari, A.C., Foglietti, V., and Koch, R.H., Appl. Phys. Lett. 63, 1561 (1993).Google Scholar
10. Olsson, E., and Char, K., Appl. Phys. Lett. 64, 1292 (1994).Google Scholar
11. Gong, Z. H., Fagerberg, R., Vassenden, F., Grepstad, J.K., and Høier, R., Appl. Phys. Lett. 60, 498 (1992).Google Scholar
12. Fagerberg, R., Vassenden, F., Gong, Z. H., and Grepstad, J. K., J. Appl. Phys. 71, 6167 (1992).Google Scholar
13. Gong, Z. H., Vassenden, F., Fagerberg, R., Grepstad, J. K., Bardal, A., and Hoier, R., Appl. Phys. Lett. 63, 836 (1993).Google Scholar