Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:47:37.950Z Has data issue: false hasContentIssue false

Microstructure - Roughness Interelation in Ru/C and Ru/B4C X-RAY Multilayers

Published online by Cambridge University Press:  25 February 2011

Tai D. Nguyen
Affiliation:
Center for X-Ray Optics, MS 2–400, Lawrence Berkeley Laboratory, Berkeley, CA 94720. Department of Materials Science and Mineral Engineering, and Applied Science & Technology, University of California, Berkeley, CA 94720.
Ronald Gronsky
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkeley, CA 94720. Department of Materials Science and Mineral Engineering, and Applied Science & Technology, University of California, Berkeley, CA 94720.
Jeffrey B. Kortricht
Affiliation:
Center for X-Ray Optics, MS 2–400, Lawrence Berkeley Laboratory, Berkeley, CA 94720.
Get access

Abstract

X-ray specular and non-specular scattering, and high-resolution transmission electron microscopy (HRTEM) were performed to study the evolution of the microstructures and interfacial roughness in Ru/C and RU/B4C multilayers upon annealing. The microstructure of the approximately 1.4 nm thick Ru layers in the as-prepared 3.5 nm period multilayers is predominantly amorphous. The Ru layers in the Ru/B4C multilayer show RuB2 nano-crystallites after annealing at 600°C for one hour, while those in the Ru/C multilayer crystallize to form hexagonal Ru crystallites. Cross-sectional HRTEM of the annealed Ru/C multilayer also shows agglomeration of the Ru layers. Non-specular measurements of the Ru/C multilayers indicate an enhanced uncorrelated roughness upon annealing. The diffuse component in the as-prepared and annealed RU/B4C multilayers shows insignificant changes. The increase in interfacial roughness in the Ru/C multilayer results from agglomeration of the Ru after annealing, consistent with HRTEM observation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kortright, J.B., J. Appl. Phys. 70, 7, 3620 (1991).CrossRefGoogle Scholar
2. Savage, D.E., Kleiner, J., Schimke, N., Phang, Y.H., Janskowski, T., Jacobs, J., Kariotis, R., and Lagally, M.G., J. Appl. Phys. 69, 1411 (1991).CrossRefGoogle Scholar
3. Steams, D.G., J. Appl. Phys. 71, 4286 (1992).Google Scholar
4. Phang, Y.H., Kariotis, R., Savage, D.E., and Lagally, M.G., J. Appl. Phys. 72, 10, 4627 (1992).CrossRefGoogle Scholar
5. Nguyen, T.D., Gronsky, R., and Kortright, J.B., MRS Proc. 139 (1989) 357.CrossRefGoogle Scholar
6. Nguyen, T.D., Gronsky, R., and Kortright, J.B., MRS Proc. 187 (1990) 95.CrossRefGoogle Scholar
7. Nguyen, T.D., Gronsky, R., and Kortright, J.B., in Physics of X-Ray Multilayer Structures (Opt. Soc. Ame., Washington, DC, 1992) 160.Google Scholar
8. Nguyen, T.D., Gronsky, R., and Kortright, J.B., Elec, J.. Microsc. Tech. 19, 473, 1991.CrossRefGoogle Scholar
9. Nguyen, T.D., Gronsky, R., and Kortright, J.B., MRS Proc. 230 (1991) 109.CrossRefGoogle Scholar
10. Nguyen, T.D., Gronsky, R., and Kortright, J.B., Proc. 5th Asia-Pacific Elec. Microsc. Conf. (1992).Google Scholar
11. Nguyen, T.D., Gronsky, R., and Kortright, J.B., Elec. Microsc. Soc. Amer. Proc. (1992).Google Scholar
12. Jiang, X., Xian, D., and Wu, Z., Appl. Phys. Lett. 57, 2549 (1990).CrossRefGoogle Scholar
13. Lucas, C.A., Nguyen, T.D., and Kortright, J.B., Appl. Phys. Lett. 59, 17, 2100 (1991).CrossRefGoogle Scholar
14. Srolovit, D.J., and Safran, S.A., J. Appl. Phys. 60,1, 247 (1986).CrossRefGoogle Scholar
15. Miller, K.T., Lange, F.F., and Marshall, D.B., J. Mat. Res. 5, 1, 151, (1990).CrossRefGoogle Scholar