Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T10:09:41.927Z Has data issue: false hasContentIssue false

Microstructures of Polysilicon

Published online by Cambridge University Press:  22 February 2011

R. Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
A. H. Carim
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
J. Morgiel
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
J. C. Bravman
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
Get access

Abstract

Some typical microstructural studies of polycrystalline silicon using transmission electron microscopy (TEM) are described, including the application of this material for assisting TEM investigations themselves. Examples include oxidation and realignment of polysilicon thin films, the structure of polysilicon in EEPROM devices, polysilicon in trench capacitors and measurement of SiO2 layer thicknesses with polysilicon overlayers. It is also shown tha grain growth in heavily phosphorus doped polysilicon films can be followed by in situ heating in the TEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bravman, J. C. and Sinclair, R., J. Electron Microsc. Tech. 1, 53 (1984).Google Scholar
2. Marcus, R. B. and Sheng, T. T., J. Electrochem. Soc. 129, 1282 (1982).Google Scholar
3. Bravman, J. C. and Sinclair, R., Thin Solid Films, 104, 153 (1983).Google Scholar
4. Bravman, J. C., Patton, G. L. and Plummer, J. D., J. Appl. Phys. 57, 2779 (1985).Google Scholar
5. Patton, G. L., Bravman, J. C. and Plummer, J. D., IEEE Trans. El. Dev., ED-33, 1754 (1986).CrossRefGoogle Scholar
6. Ogawa, S., Okuda, S., Kouzaki, T., Yoshida, T. and Yoshioka, Y., these proceedings.Google Scholar
7. Carim, A. H. and Sinclair, R., J. Electrochem. Soc. 134, 741 (1987).Google Scholar
8. Carim, A. H., Dovek, M. M., Quate, C. F., Sinclair, R. and Vorst, C., Science, 237, 630 (1987).Google Scholar
9. Sinclair, R., Kim, K. B., Shippou, O. and Iwasaki, H., submitted for publication.Google Scholar
10. Bourret, A., Desseaux, J. and Renault, A., Phil. Mag. A 45, 1 (1982)Google Scholar
11. Cunningham, B. and Ast, D., Proc. Mats. Res. Soc., 5, 21 (1982).Google Scholar
12. Thconpson, C. V. and Smith, H. I., Appl. Phys. Lett., 44, 603 (1984).Google Scholar
13. Ouwens, C. D. and Heijligers, H., Appl. Phys. Lett., 26, 569 (1975).Google Scholar
14. Wada, Y. and Nishimatsu, S., J. Electrochem. Soc., 125, 1499 (1978).Google Scholar
15. Sinclair, R., Parker, M. A. and Kim, K. B., Untramicrosc., 23, 383 (1987).Google Scholar