Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:15:00.811Z Has data issue: false hasContentIssue false

Mixed Alkali Effect as a Retarding Effect of Secondary Diffusion Processes in Glass

Published online by Cambridge University Press:  10 February 2011

Vladimir Belostotsky*
Affiliation:
Fusion Lighting, Inc., Rockville, MD 20855, USA, vladbel@erols.com
Get access

Abstract

Ion mobility in mixed alkali glass is discussed in the context of the recent experimental observation that oxygen diffusion from molten salt into glass accompanies the replacement of smaller alkali ions for larger alkali ions during ion exchange. The assumption is made that simultaneous migration of two unlike monovalent cations induces, among other things, oxygenexchange diffusion between sites. Diffusing oxygen molecules form additional fluctuating sites or traps lying along the ion pathways between regular ionic sites. Instead of jumping directly to the regular ionic site, mobile ions are forced to execute several additional hops between fluctuating sites, and this results in significant reduction in ion mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isard, J.O., J. Non-Cryst. Solids, 1, 235 (1969).Google Scholar
2. Frischat, G.H. and Kirchmeyer, R., J. Am. Ceram. Soc. 56, 552 (1973).Google Scholar
3. Day, D.E., J. Non-Cryst. Solids, 21, 343 (1976).Google Scholar
4. Ingram, M.D., Phys. Chem. Glasses, 28, 215 (1987).Google Scholar
5. Hunt, A., J. Non-Cryst. Solids, 220, 1 (1997).Google Scholar
6. Hendrickson, J.R. and Bray, P.J., Phys. Chem. Glasses, 13, 43 (1972).Google Scholar
7. Rouse, G.B., Gordon, J.M. and Resin, W.M., J. Non-Cryst. Solids, 33, 83 (1979).Google Scholar
8. Tomozawa, M., McGahay, V., J. Non-Cryst. Solids, 128, 48 (1991).Google Scholar
9. Bunde, A., Funke, K., and Ingram, M.D., Solid State Ionics, 86–88, 1311 (1996).Google Scholar
10. Greaves, G.N., Solid State Ionics, 105, 243 (1998).Google Scholar
11. Bunde, A., Ingram, M.D. and Maass, P., J. Non-Cryst. Solids, 172–174, 1222 (1994).Google Scholar
12. Belostotsky, V., J. Non-Cryst. Solids, 238, 171 (1998).Google Scholar
13. Souquet, J.L., Duclot, M., Levy, M., Solid State Ionics, 105, 237 (1998).Google Scholar
14. Liebau, F., Structural Chemistry of Silicates (Springer-Verlag, Berlin, 1985), p. 267.Google Scholar
15. Greaves, G.N., Catlow, C.R.A., Vessal, B., Charnock, J., Henderson, C.M.B., Zhu, R., Qiao, S., Wang, Y., Gutman, S.J. and Houde-Walter, S., Int. Phys. Conf., Ser. No. III, 411 (1990).Google Scholar
16. Scholze, H., Glass: Nature, Structure, and Properties (Springer-Verlag, New York, 1990), p.131.Google Scholar
17. Houde-Walter, S.N., Inman, J.M., Dent, A.J., and Greaves, G.N., J. Phys. Chem. 97, 9330 (1993).Google Scholar
18. Jackson, W.E., Brown, G.E. Jr. and Ponader, C.W., J. Non-Cryst. Solids, 93, (1987).Google Scholar
19. Frenkel, J., The Kinetic Theory of Liquids (Dover Publications, New York, 1946), p. 43 Google Scholar
20. Griscom, D.L., J. Ceram. Soc. Jpn. 99, 923 (1991).Google Scholar
21. Norton, F.U., Nature, 191 [4789] 701 (1961).Google Scholar
22. Kalen, J.D., Boyce, R.S., and Cawley, J.D., J. Am. Ceram. Soc. 74, 203 (1991).Google Scholar
23. Gee, B. and Eckert, H., J. Phys. Chem., 100, 3705 (1996).Google Scholar
24. Ingram, M.D., J. Am. Ceram. Soc. 63, 248 (1980).Google Scholar
25. Ingram, M.D., J. Non-Cryst. Solids, 222, 42 (1997).Google Scholar
26. Jain, H. and Lu, X., J. Am. Ceram. Soc., 80, 517 (1997).Google Scholar