Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T17:18:32.961Z Has data issue: false hasContentIssue false

Mixed Ionic-Electronic Conduction of Na-Beta-Alumina Under the Conditions of a Potentiometric CO2 Sensor

Published online by Cambridge University Press:  10 February 2011

H. Näfe
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5 D-70569 Stuttgart, Germany, naefe@aldix.mpi-stuttgart.mpg.de
S. Gollhofer
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5 D-70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5 D-70569 Stuttgart, Germany
Get access

Abstract

It is shown that, on employing a practically relevant type of a potentiometric solid state CO2 sensor comprising Na-beta-alumina as solid electrolyte and Na2CO3 as gas sensitive electrode, the voltage response may be remarkably affected by electronic transference. This is in contradiction to what is commonly stated in the literature about the measuring properties of such a type of a sensor. On the other hand, the observation of a non-negligible amount of electronic conduction confirms previous findings on the behaviour of Na-beta-alumina under the conditions of a CO2sensor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Näfe, H., Solid State Ionics 68, 249 (1993).Google Scholar
2. Näfe, H., Fritz, M., and Lorenz, W.J., Solid State Ionics 74, 275 (1994).Google Scholar
3. Näfe, H., Sun, C., Solid States Ionics 86–88, 773 (1996).Google Scholar
4. Näfe, H., Solid State Ionics 113–115, 205 (1998).Google Scholar
5. Näfe, H., J. Electrochem. Soc. 143, 943 (1996).Google Scholar
6. Näfe, H., Sensors & Actuators B 21, 79 (1994).Google Scholar
7. Näfe, H. and Steinbrück, M., J. Electrochem.Soc. 141, 2779 (1994).Google Scholar
8. Näfe, H. in Electroceramics IV, edited by Waser, R., Hoffmann, S., Bonnenberg, D., Hoff-mann, Ch. (Verlag der Augustinus Buchhandlung, Aachen 1994), Vol. II, pp. 745748.Google Scholar
9. Näfe, H., Gollhofer, S., and Aldinger, F, to be published.Google Scholar
10. Wagner, C., Z. phys. Chem. B21, 25 (1933).Google Scholar
11. Wagner, C. in Advances in Electrochemistry and Electrochemical Engineering, Vol. 4, edited by Delahay, P. (Interscience Publ., New York-London-Sydney 1966), pp. 146.Google Scholar
12. Schmalzried, H., Z. phys. Chem. NF 38, 87 (1963).Google Scholar
13. JANAF Thermochemical Tables, 3rd Edition., National Bureau of Standards, Washington 1985.Google Scholar
14. Näfe, H., J. Nucl. Mater. 175, 67 (1990).Google Scholar