No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
In an attempt to increase the deposition rate, new Cu (I) compounds, (hfac)Cu(1-pentene)(1) and (hfac)Cu(VTMOS)(2) have been synthesized. These species are chartreuse liquids and exhibit sufficient vapor pressures to allow high transport rates.
In order to avoid the premature decomposition of the copper precursors during CVD processes, the 50% of free 1-pentene, and VTMOS was added to the compounds 1 and 2 respectively. These mixtures 1 and 2 were used in this study. Approximately 2gm of precursor was used for each experiment. No premature decomposition of the precursor in the source reservoir was observed during CVD processes. It is a sufficiently important result to expect the use of these mixtures in copper CVD to achieve the reproducible deposition.
The copper films using these mixtures were deposited in a hot-wall pyrex reactor at a pressure of approximately 10–2 torr under dynamic vacuum. The films deposited at 100°C, 150°C and 200°C from the mixture 1. Pure copper films were deposited from these species. The resistivities 1.8 ∼ 2.1 μΩcm were obtained in the deposition temperature range. SEM revealed that the surface morphology of the films grown in these depositon temperature range was composed of dense film and grains were well connected. The deposition rate at 200°C was 3,500 Å/min.