Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T04:26:58.137Z Has data issue: false hasContentIssue false

MOCVD of High-K Dielectrics and Conductive Metal Nitride Thin Films

Published online by Cambridge University Press:  10 February 2011

Yoshihide Senzaki
Affiliation:
Schumacher, Carlsbad, California, 92009 (e-mail: senzaky@apci.com)
Richard F. Hamilton
Affiliation:
Air Products and Chemicals, Inc., Allentown, Pennsylvania, 18195
Kimberly G. Reid
Affiliation:
Motorola, Austin, Texas, 78721
Christopher C. Hobbs
Affiliation:
Motorola, Austin, Texas, 78721
Rama I. Hegdec
Affiliation:
Motorola, Austin, Texas, 78721
Mike J. Tinerc
Affiliation:
Motorola, Austin, Texas, 78721
Get access

Abstract

A known liquid mixture of [(CH3CH2)2N]3 Ta=NCH2CH3 and [(CH3CH2)2N]3Ta[ð2-CH3CH2N=CH(CH3)] was studied to deposit Ta2O5 and TaN thin films by CVD. Films were deposited at temperatures below 400°C using oxygen for oxide and ammonia for nitride, respectively. XRD analysis revealed that as-deposited amorphous tantalum oxide films were converted to hexagonal Ta2O5 after annealing under oxygen, while tantalum nitride thin films contained cubic TaN as deposited. The low viscosity, thermal stability, and sufficient volatility of the precursor allows direct liquid injection to deliver the precursor, which results in high deposition rate and uniformity of the deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) For example, see Treichel, H., Mitwalsky, A., Sandler, N. P., Tribula, D., Kern, W., and Lane, A. P., Adv. Mat. Opt. Elec. 1, p. 299 (1992).Google Scholar
2) Devine, R. A. B., Vallier, L., Autran, J. L., Paillet, P., and Leray, J. L., Appl. Phys. Lett. 68, p. 1775 (1996).Google Scholar
3) Jeon, S. R., Han, S. W., and Park, J. W., J. Appl. Phys. 77, p. 5978 (1995).Google Scholar
4) Tabuchi, T., Sawado, Y., Uematsu, K., and Koshiba, S., Jpn. J. Appl. Phys. 30, p. L1974 (1991).Google Scholar
5) An, C. H. and Sugimoto, K., J. Electrochem. Soc. 141, p. 853 (1994).Google Scholar
6) Jones, A. C., Leedham, T. J., Wright, P. J., crosbie, M. J., Williams, D. J., Lane, P. A., and O'Brien, P., Mat. Res. Soc. Symp. Proc. 495, p. 11, Pittsburgh, PA, 1998.Google Scholar
7) Pollard, K. D. and Puddephatt, R. J., Chem. Mater. 11, p. 1069 (1999).Google Scholar
8) Wang, M. T., Lin, Y. C., and Chen, M. C., J. Electrochem. Soc. 145, p. 2538 (1998).Google Scholar
9) Kaloyeros, A. E., Chen, X., Stark, T., Kumar, K., Seo, S.-C., Peterson, G. G., Frisch, H. L., Arkles, B., and Sullivan, J., J. Electrochem. Soc. 146, p. 170 (1999).Google Scholar
10) Hieber, K., Thin Solid Films 24, p. 157 (1974).Google Scholar
11) Fix, R., Gordon, R. G., and Hoffman, D. M., Chem. Mater. 5, p. 614 (1993).Google Scholar
12) Jun, G.-C., Cho, S.-L., Kim, K.-B., Shin, H.-K., and Kim, D.-H., Jpn. J. Appl. Phys. 37, p. L30 (1998).Google Scholar
13) Cho, S.-L., Kim, K.-B., Min, S.-H., Shin, H.-K., and Kim, S.-D., J. Electrochem. Soc. 146, p. 3724 (1999).Google Scholar
14) Tsai, M. H., Sun, S. C., Chiu, H. T., Tsai, C. E., and Chuang, S. H., Appl. Phys. Lett. 67, p. 1128 (1995).Google Scholar
15) Chiu, H.-T. and Chang, W.-P., J. Mat. Sci. Lett. 11, p. 96 (1992).Google Scholar
16) Bradley, D. C. and Thomas, I. M., Can. J. Chem. 40, p. 1355 (1962).Google Scholar
17) Takahashi, Y., Onoyama, N., Ishikawa, Y., Motojima, S., and Sugiyama, K., Chem. Lett. p. 525 (1978).Google Scholar
18) Terao, N., Jpn. J. Appl. Phys. 6, p. 21 (1967).Google Scholar
19) Ezhilvalavan, S. and Tseng, T. Y., J. Mater. Sci., Mater. Electron.. 10, p. 9 (1999) and the references cited therein.Google Scholar
20) Intemann, A., Koerner, H., and Koch, F., J. Electrochem. Soc. 140, p. 3215 (1993).Google Scholar