Published online by Cambridge University Press: 10 February 2011
The quantitative detection of gas concentrations in mixed atmospheres is becoming increasingly important in manufacturing processing, environmental monitoring, and medical diagnostics. Several conductive oxides, such as SnO2, ZnO, and TiO2, are well known to exhibit changes in resistivity when exposed to various gases at temperatures ranging from 200–500°C. Current discrete devices based on resistive changes such as the Taguchi sensor, however, suffer from certain performance problems, including poor gas detection specificity. Integrated arrays of sensors, fabricated using planar technology, offer a promising solution to these problems, as well as other benefits such as low power consumption and low cost.
In this paper, we report the results of using Metalorganic Chemical Vapor Deposition (MOCVD) to fabricate thin films of SnO2 on microhotplate arrays. The studied arrays contain 4 micromachined, suspended elements, each having an integrated resistive heater that produces a rapid thermal rise time ∼3 msec. By separately heating individual elements, we can take advantage of the thermally selective nature of the MOCVD process to limit deposition to these areas, resulting in a maskless deposition process. In addition, these array elements have surface electrical contacts that permit the measurement of the resistance of the thin films during deposition, as well as when they are operated in a gas sensing mode. In situ growth measurements will be reported.