Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T18:40:27.639Z Has data issue: false hasContentIssue false

Model for Dynamic Shear Modulus of Semiflexible Polymer Solutions

Published online by Cambridge University Press:  15 February 2011

F. Gittes
Affiliation:
Department of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109
B. Schnurr
Affiliation:
Department of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109
C. F. Schmidt
Affiliation:
Department of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109
P. D. Olmsted
Affiliation:
Department of Physics, University of Leeds, Leeds, LS2 9JT, United Kingdom
F. C. Mackintosh
Affiliation:
Department of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

We discuss a dynamical model for the frequency-dependent shear modulus of an entangled solution of semifexible polymers, based on longitudinal fluctuations in filaments between entanglement points or crosslinks. The goal is to explain non-Rouse, power-law scaling of the bulk shear modulus that is found via microscopic rheology of highly entangled F-actin solutions. This generalizes a previous model for the static modulus. Hydrodynamic effects, and the validity of a local drag approximation below the scale of the mesh size, are discussed. We test aspects of our model via a molecular dynamics simulation, and also present for comparison experimental results from microrheology on F-actin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] de Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).Google Scholar
[2] Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics, Oxford Univ. Press, London, 1986.Google Scholar
[3] MacKintosh, F. C.; Kds, J.; Janmey, P. A. (1995), Phys. Rev. Lett. 75, 44254428.Google Scholar
[4] Kroy, K. and Frey, E. (1996), Phys. Rev. Lett. 77, 306.Google Scholar
[5] Maggs, A. C. (1997), Phys. Rev. E 55, 73967400.Google Scholar
[6] Morse, D. C., preprint.Google Scholar
[7] Gittes, F. and MacKintosh, F.C., submitted for publication.Google Scholar
[8] Yanagida, T., Nakase, M., Nishiyama, K., and Oosawa, F. (1984). Nature 301, 58;Google Scholar
[9] Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J. (1993), J. Cell Biology 120, 923934.Google Scholar
[10] Ott, A.; Magnasco, M.; Simon, A.; Libchaber, A. (1993), Phys. Rev. E, 48, R16421645.Google Scholar
[11] Amblard, F.; Maggs, A. C.; Yurke, B.; Pargellis, A. N.; Leibler, S. (1996), Phys. Rev. Lett. 77, 44704473.Google Scholar
[12] Gittes, F., Schnurr, B., Olmsted, P.D., MacKintosh, F.C., and Schmidt, C.F. (1997). Phys. Rev. Lett., vol.79, 32863289.Google Scholar
[13] Schnurr, B., Gittes, F., MacKintosh, F.C., and Schmidt, C.F. (1997). Macromolecules, vol. 30, 77817792.Google Scholar
[14] Granek, R., preprint.Google Scholar
[15] Lighthill, J. Mathematical Biofluiddynamics, Society for Industrial and Applied Mathematics, Philadelphia, 1973.Google Scholar