Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T01:08:16.775Z Has data issue: false hasContentIssue false

Modeling and Real-Time Process Monitoring of Organometallic Chemical Vapor Deposition of III-V Phosphides and Nitrides at Low and High Pressures

Published online by Cambridge University Press:  10 February 2011

K.J. Bachmann
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, North Carolina 27695
B.H. Cardelino
Affiliation:
Spelman College, Atlanta, Georgia 30314
C.E. Moore
Affiliation:
NASA George C. Marshall Space Flight Center, Huntsville, Alabama 35812
C.A. Cardelino
Affiliation:
School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, Georgia 30332
N. Sukidi
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, North Carolina 27695
S. Mccall
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures ≤ 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bedair, S., McIntosh, F.G., Roberts, J.C., Piner, E.L., Boutros, K.S. and ElMasry, N.A., J. Crystal Growth 178 (1997) 113 10.1016/S0022-0248(97)00069-9Google Scholar
2 Trainor, J. W. and Rose, K., J. Electron. Mater. 3, 821 (1974)10.1007/BF02651400Google Scholar
3 Bachmann, K.J., McCall, S., LeSure, S., Sukidi, N. and Wang, F., J. of the Japan Society of Microgravity Applications 15, 436 (1998)Google Scholar
4 MacChesnay, J., Bridenbough, P.M., and O'Connor, P.B., Mater. Res. Bull. 5 (1970) 783 10.1016/0025-5408(70)90028-0Google Scholar
5 Grezzegory, I., Krukowski, S., Jun, J., Bockowski, M, Wroblewski, M and Porwoski, S., High Pressure Res. (UK), in pressGoogle Scholar
6 Ambacher, O., Brandt, M.S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R.A., Mier, A., Bergmaier, A. and Dollinger, G., J. Vac. Sci. Technol. B 14, 3532 (1996)10.1116/1.588793Google Scholar
7 Dietz, N. and Bachmann, K.J., Mater. Res. Bull. 20 (1995) 133 Google Scholar
8 Bachmann, K.J., Rossow, U. and Dietz, N., Mater. Sci. & Eng. B37,472 (1995)10.1016/0921-5107(95)01411-XGoogle Scholar
9 Dietz, N. and Bachmann, K.J. Vacuum 47 (1996) 133 10.1016/0042-207X(95)00232-4Google Scholar
10 Bachmann, K.J., Hoepfner, C., N.Dietz, Miller, A.E., Harris, C., Aspnes, D.E., Dietz, N., Tran, H.T., Beeler, S., Ito, K, Banks, H.T. and Russow, U., Appl. Surf. Sci. 112, 38 (1997)10.1016/S0169-4332(96)00975-0Google Scholar
11 Bachmann, K.J., Sukidi, N., Hoepfner, C., Harris, C., Dietz, N., Tran, H.T., Beeler, S., Ito, K and Banks, H.T., J. Cryst. Growth, 183,323 (1998)10.1016/S0022-0248(97)00410-7Google Scholar
12 Bachmann, K.J., Rossow, U., Sukidi, N., Castleberry, H. and Dietz, N., J. Vac. Sci. Technol. B14, 3019 (1996)10.1116/1.589058Google Scholar
13 Murrell, A.J., Wee, A.T.S., Fairbrother, D.H., Singh, N.K., Foord, J.S., Davies, G.J. and Andrews, D.A., J. Appl. Phys. 68,4053 (1990)10.1063/1.346242Google Scholar
14 Robertson, A. Jr., Chiu, T.H., Tsang, W.T. and Cunningham, J.E., J. Appl. Phys. 64, 877 (1988)10.1063/1.342508Google Scholar
15 Banse, B.A. and Creighton, J.R., Surf. Sci. 257, 221 (1991)10.1016/0039-6028(91)90794-SGoogle Scholar
16 Wong, K.C., Jackson, M.S., McEllistrem, M.T., Culp, R.D. and Eckert, J.G., J. Vac. Sci. Technol. A 15, 3127 (1997)10.1116/1.580856Google Scholar
17 Beeler, J., Tran, H.T. and Dietz, N., J. Appl. Phys. (1999), submittedGoogle Scholar
18 Theodoropoulos, C., Ingle, N.K., Mountsiaris, T.J., Chen, Z.-Y., Liu, P.L., Kiseoglou, G. and Petrou, A., J. Electrochem Soc. 142, 2086 (1995)10.1149/1.2044246Google Scholar
19 Dietz, N. and Ito, K., Thin Solid Films 313–314, 615 (1998)Google Scholar
20 Dietz, N., Ito, K., Woods, V. and, J. Vac. Sci. Technol. (1999), acceptedGoogle Scholar
21 Bachmann, K.J. and Mahajan, S., in In-situ Monitoring of Thin Film Processes and Characterization, Auciello, O. and Krauss, A., eds., Wiley, New York, N.Y., submittedGoogle Scholar
22 Sukidi, N., Bachmann, K.J., Narayanan, V. and Mahajan, S., J. Electrochem Soc. 146, 1147 (1999)10.1149/1.1391736Google Scholar
23 Bachmann, K.J., McCall, S., LeSure, S., Sukidi, N. and Wang, F., J. of The Japan Society of Microgravity Applications 15, 436 (1998)Google Scholar
24 Kern, R., Basic Mechanisms in the Early Stages of Epitaxy, in Current Topics of Materials Science, Kaldis, E., ed., North Holland Publishing Company, Amsterdam (1979), p. 131 Google Scholar
25 Narayanan, V., Mahajan, S., Sukidi, N., Bachmann, K., Woods, V. and Dietz, N., Phil. Mag. (1999) in printGoogle Scholar
26 Kepler, G.M., Höpfner, C., Scroggs, J.S. and Bachmann, K.J., Materials Science and Engineering B57, 9 (1998)10.1016/S0921-5107(98)00256-6Google Scholar
27 Palik, E.D. and Holm, E.D., Optical Engrg. 17, 512 (1978)Google Scholar
28 Bachmann, K.J., Cardelino, B.H., Cardelino, C.A., Frazier, D.O., Krishnan, A., Lowry, S., Moore, C., and Zhou, N., Proc. SPIE 3625 (1999), acceptedGoogle Scholar
29 Ly, H.V. and Tran, H.T., Quarterly of Applied Mathematics (1999), acceptedGoogle Scholar
30 (a) Eyring, H., J. Chem. Phys. 3, 107 (1935), (b) R.D. Levine and R.B. Bernstein; “Molecular Reaction Dynamics and Chemical Reactivity”; Oxford University Press, New York, NY (1987) p. 18810.1063/1.1749604Google Scholar
31 Oikawa, S., Tsuda, M., Morishita, M., mashita, M. and Kuniya, Y., J. Crstal Growth 91, 471 (1988)10.1016/0022-0248(88)90114-5Google Scholar
32 GAUSS94W; Gaussian 94 (Revision A. 1), Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T.A., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowki, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A.; Gaussian, Inc., Pittsburgh, PA, (1995)Google Scholar
33 Becke, A.D., J. Chem. Phys. 98, 5648 (1993); 97,9173 (1992); 96, 2155 (1992).10.1063/1.464913Google Scholar
34 Lee, C., Yang, W., Parr, R.G.; Phys. Rev. B37,785 (1988)10.1103/PhysRevB.37.785Google Scholar
35 Hehre, W., Radom, L., Schleyer, P.v.R., Pople, J.A.; “Ab Initio Molecular Orbital Theory”; Wiley, New York (1986)Google Scholar
36 QCPE Program 455 version 6.1 (1990)Google Scholar
37 Dewar, M.J.S., Zoebisch, E.G. and Healy, E.F.; “AM1: A New General Purpose Quantum Mechanical Molecular ModelJ. Amer. Chem. Soc. 107, pp.39023909 (1985)10.1021/ja00299a024Google Scholar
38 Robinson, R.J. and Holbrook, K.A., Unimolecular Reactions, Wiley-Interscience, New York, NY (1972)Google Scholar
39 Buchan, N.I. and Jasinski, J.M., J. Crystal Growth 92, 601 (1992)Google Scholar
40 Rice, B.M., Raff, L.M. and Thompson, D.L., J. Chem. Phys. 85,4392 (1986)10.1063/1.451859Google Scholar
41 Song, K. and Hase, W.L., J. Chem. Phys. 110, 6198 (1999)10.1063/1.478525Google Scholar
42 Davis, R., Lamb, H. and Tsong, I., private communicationGoogle Scholar