Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T07:16:45.519Z Has data issue: false hasContentIssue false

Modeling InSe Phase-change Materials

Published online by Cambridge University Press:  01 February 2011

K. Kohary
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
V. M. Burlakov
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
D. Nguyen-Manh
Affiliation:
Theory and Modelling Department, EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB, UK
D. G. Pettifor
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Get access

Abstract

The amorphous structure of InxSey has been studied by a first principles tight-binding molecular dynamics technique using the program package PLATO (Package for Linear-combination of Atomic Type Orbitals). The three-dimensional amorphous structures with different densities were prepared by quick quenching from the liquid phase. The characteristics of short-range order such as coordination numbers, radial and bond angle distributions, and ring statistics have been analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishida, T., Terao, M., Miyauchi, Y., Horigome, S., Kaku, T., and Ohta, N., Appl. Phys. Lett. 50, 667 (1987).Google Scholar
2. Chaiken, A., Gibson, G.A., Chen, J., Yeh, B.S., Jasinski, J., Liliental-Weber, Z., Nauka, K., Yang, C.C., Lindig, D.D., and Subramanian, S. (in preparation).Google Scholar
3. Chaiken, A., Gibson, G.A., Nauka, K., Yang, C.C., Yeh, B.-S., Bicknell-Tassius, R., Chen, J., Jasinski, J., Liliental-Weber, Z., and Lindig, D.D., presented at the 2003 MRS Fall Meeting (paper HH1.9), Boston, MA, 2003 (unpublished).Google Scholar
4. Gibson, G.A., Chaiken, A., Nauka, K., Yang, C.C., Davidson, R., Holden, A., Lindig, D.D., Bicknell-Tassius, R., Chen, J., Liao, H., Neiman, D., Shut, D., Subramanian, S., Yeh, B.-S., Jasinski, J., Liliental-Weber, Z., presented at the 2003 MRS Fall Meeting (paper HH2.6), Boston, MA, 2003 (unpublished).Google Scholar
5. Jasinski, J., Liliental-Weber, Z., Chaiken, A., Gibson, G.A., Nauka, K., Yang, C.C., and Bicknell-Tassius, R., (Mater. Res. Soc. Proc. vol. 803, p.GG.4.5.1, 2004) (in print).Google Scholar
6. Jablonska, A., Burian, A., Burian, A.M., Szade, J., Proux, O., Hazemann, J.L., Mosset, A., and Raoux, D., J. of Non-Cryst. Sol. 299–302, 238 (2002).Google Scholar
7. Jablonska, A., Burian, A., Burian, A.M., Lecante, P., and Mosset, A., J. of Alloys and Compounds 328, 214 (2001).Google Scholar
8. Burian, A., Burian, A.M., Weszka, J., Zelechower, M., and Lecante, P., J. of Mat. Sci. 35, 3121 (2000).Google Scholar
9. Popovic, S., Tonejc, A., Grzeta-Plenkovic, B., Celustka, B., and Trojko, R., J. Appl. Cryst. 12, 416 (1979).Google Scholar
10. Kenny, S.D., Horsefield, A.P., and Fujitani, H., Phys. Rev. B 62, 4899 (2000).Google Scholar
11. Goedecker, S., Teter, M., and Hutter, J., Phys. Rev. B 54, 1703 (1996).Google Scholar
12. Hartwigsen, C., Goedecker, S., and Hutter, J., Phys. Rev. B 58, 3641 (1998).Google Scholar
13. Ye, J., Soeda, S., Nakamura, Y., and Nittono, O., Jpn. J. Appl. Phys. 37, 4264 (1998).Google Scholar
14. Marks, N.A., Cooper, N.C., and McKenzie, D.R., Phys. Rev. B 65, 075411 (2002).Google Scholar