Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T05:56:48.745Z Has data issue: false hasContentIssue false

Modeling of Free Radical Polymerization of Azobenzene-based Linear Polymers

Published online by Cambridge University Press:  27 February 2012

Danish Iqbal
Affiliation:
Center for Biomaterial Development, Institute of Polymer Research, HZG Research Center Geesthacht, Kantstr. 55, 14513 Teltow, Germany
C. Melchert
Affiliation:
Center for Biomaterial Development, Institute of Polymer Research, HZG Research Center Geesthacht, Kantstr. 55, 14513 Teltow, Germany
M. Behl
Affiliation:
Center for Biomaterial Development, Institute of Polymer Research, HZG Research Center Geesthacht, Kantstr. 55, 14513 Teltow, Germany
A. Lendlein
Affiliation:
Center for Biomaterial Development, Institute of Polymer Research, HZG Research Center Geesthacht, Kantstr. 55, 14513 Teltow, Germany
S. Beuermann*
Affiliation:
Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
Get access

Abstract

Modeling of free radical polymerizations of the liquid-crystalline monomer 6-[4-(4-heptyloxyphenylazo)phenoxy]hexylacrylate using the PREDICI software package is reported. The model accounts for all elemental reactions that were identified to be important for radical polymerizations of acrylate-type monomers. On the basis of butyl acrylate kinetic data a remarkable agreement between number average molar masses from modelling (Mn,sim) and from experiments (Mn,exp) is observed: Mn,sim = 17800 g·mol−1 and Mn,exp = 17400 g·mol−1. Similarly, dispersity values of 1.8 and 1.6 were determined via modelling and experiments, respectively. It is shown that the assumption of butyl acrylate kinetics provides a reasonable approximation even for acrylate-based monomers having mesogenic substituents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angeloni, A. S., Caretti, D., Carlini, C., Chiellini, E., Galli, G., Altomare, A., Solaro, R., Laus, M., Liq. Cryst. 4, 513 (1989).Google Scholar
2. Barrett, C. J., Mamiya, J. I., Yager, K. G., Ikeda, T., Soft Matter 3, 1249 (2007).Google Scholar
3. Ohm, C., Brehmer, M., Zentel, R., Adv. Mater. 22, 3366 (2010).Google Scholar
4. Behl, M., Zotzmann, J., Lendlein, A., Adv. Polym. Sci. 226, 1 (2010).Google Scholar
5. Ikeda, T., Mamiya, J., Yu, Y. L., Angew. Chem. Int. Ed. 46, 506 (2007).Google Scholar
6. Peck, A. N. F., Hutchinson, R. A., Macromolecules 37, 5944 (2004).Google Scholar
7. Li, C. S., Lo, C. W., Zhu, D. F., Li, C. H., Liu, Y., Jiang, H. R., Macromol. Rapid. Commun. 30, 1928 (2009).Google Scholar
8. Asua, J. M., Beuermann, S., Buback, M., Castignolles, P., Charleux, B., Gilbert, R. G., Hutchinson, R. A., Leiza, J. R., Nikitin, A. N., Vairon, J. P., van Herk, A. M., Macromol. Chem. Phys. 205, 2151 (2004).Google Scholar
9. Wang, W., Hutchinson, R. A., AICHE J. 57, 227 (2011).Google Scholar
10. Barth, J., Buback, M., Hesse, P., Sergeeva, T., Macromolecules 43, 4023 (2010).Google Scholar
11. Beuermann, S., Buback, M., Prog. Polym. Sci. 27, 191 (2002).Google Scholar