Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T14:12:25.536Z Has data issue: false hasContentIssue false

Modeling of Non-Random Nucleation Protocols

Published online by Cambridge University Press:  15 February 2011

Eloi Pineda
Affiliation:
E.U. d'Enginyeria Tècnica Agrícola (ESAB), Universitat Politècnica de Catalunya. Urgell 187, 08036-Barcelona, SPAIN. Departament de Física Aplicada, Universitat Politècnica de Catalunya, Campus Nord UPC, Mòdul B4, 08034 - Barcelona, SPAIN, crespo@fa.upc.es.
Trinitat Pradell
Affiliation:
E.U. d'Enginyeria Tècnica Agrícola (ESAB), Universitat Politècnica de Catalunya. Urgell 187, 08036-Barcelona, SPAIN.
Daniel Crespo
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, Campus Nord UPC, Mòdul B4, 08034 - Barcelona, SPAIN, crespo@fa.upc.es.
Get access

Abstract

Non random nucleation processes are a subject of much interest in the study of first order phase transformations. However, the theory available to obtain the time evolution of the transformation for a nucleation and growth process, the well known Kolmogorov, Johnson-Mehl and Avrami kinetic equation (KJMA), is not accomplished if the nucleation process is nonrandom. Therefore, KJMA does not give an adequate description of the transformation kinetics.

In the present paper, a non-random nucleation protocol resulting from a reduced nucleation rate due to the nearby presence of other growing grains is considered. Monte-Carlo simulations of such processes are performed, and the deviations from the Avrami kinetics observed are analyzed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolmogorov, A. N., Bull. Acad. Sci. USSR, Phys. Ser. 1, p. 355 (1937).Google Scholar
2. Johnson, W. A. and Mehl, P. A., Trans. Am. Inst. Mining and Metallurgical Eng. 135, p. 416 (1939).Google Scholar
3. Avrami, M., J. Chem. Phys. 7, p. 1103 (1939); 8, p. 212 (1940); 9, 177 (1941).Google Scholar
4. Hampel, G., Pundt, A. and Hesse, J., Phys.: Condens. Matter 4, p. 3195 (1992).Google Scholar
5. Cserei, A., Jiang, J., Aubertin, F. and Gonser, U. J. Mat. Sci. 29, p. 1213 (1994).Google Scholar
6. Danzig, A., Mattern, N. and Doyle, S. Nuc. Inst. Met. Phy. Res. B 97, p. 465 (1995).Google Scholar
7. Almansour, A., Matsugui, K. and Hatayama, T., Mater. Transact. JIM 37, p. 1595 (1996).Google Scholar
8. Hermann, H., Mattern, N., Roth, S. and Uebele, P., Phys. Rev. B 56, p. 13888 (1997).Google Scholar
9. Yavari, A. R. and Negri, D., J. Metast. and Nanocryst. Mat. 1 (Mat. Sci. Forum 307) 63 (1999).Google Scholar
10. Starink, M. J., J. Mat. Sci. 32, p. 4061 (1997).Google Scholar
11. Price, C. W., Acta Metall. Mater. 39, p. 1807 (1991).Google Scholar
12. Price, C. W., Acta Metall. 35, p. 1377 (1987).Google Scholar
13. Sessa, V., Fanfoni, M. and Tomellini, M., Phys. Rev. B 54, 836 (1996).Google Scholar
14. Pradell, T., Crespo, D., Clavaguera, N. and Clavaguera-Mora, M.T. in Non-Crystalline & Nanoscale Materials, edited by Rivas, J. & López-Quintela, M. A. (Proc. of the Fifth Int. Workshop on Non-Crystalline Solids, World Scientific Pub. Co., Singapore, 1998) p. 317322.Google Scholar
15. Pradell, T., Crespo, D., Clavaguera, N. and Clavaguera-Mora, M.T., J. Phys.: Cond. Matter 10, p. 3833 (1998).Google Scholar