Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T09:24:52.288Z Has data issue: false hasContentIssue false

The Modeling Routes for the Chemical Vapor Deposition Process

Published online by Cambridge University Press:  15 February 2011

M. Pons
Affiliation:
S2MC, URA n° 413/ENSEEG/INPG, BP 75 - Domaine Universitaire 38402 Saint-Martin d'Hères (France)
C. Bernard
Affiliation:
LTPCM, URA n° 29/ENSEEG/INPG, BP 75 - Domaine Universitaire 38402 Saint-Martin d'Hères (France)
H. Rouch
Affiliation:
LMGP, URA n° 1109/ENSPG/LNPG, BP 46 - Domaine Universitaire 38402 Saint-Martin d'Hères (France)
R. Madar
Affiliation:
LMGP, URA n° 1109/ENSPG/LNPG, BP 46 - Domaine Universitaire 38402 Saint-Martin d'Hères (France)
Get access

Abstract

The purpose of this article is to present the modeling routes for the chemical vapor deposition process with a special emphasis to mass transport models with near local thermochemical equilibrium imposed in the gas-phase and at the deposition surface. The theoretical problems arising from the linking of the two selected approaches, thermodynamics and mass transport, are shown and a solution procedure is proposed. As an illustration, selected results of thermodynamic and mass transport analysis and of the coupled approach showed that, for the deposition of Si1-x Gex solid solution at 1300 K (system Si-Ge-Cl-H-Ar), the thermodynamic heterogeneous stability of the reactive gases and the thermal diffusion led to the germanium depletion of the deposit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jensen, K.F., in Microelectronics Processing: Chemical Engineering Aspects, edited by Hess, D.W. and Jensen, K.F., Advances in Chemistry Series 221 (American Chemical Society, Washington DC, 1989) pp. 199263.10.1021/ba-1989-0221.ch005Google Scholar
[2] Gokoglu, S.A., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T.M., Gallois, B.M. and Warren, J.W. (Materials Research Society Symp. 250, Pittsburgh, PA, 1992) pp 1728.Google Scholar
[3] Kleijn, C.R., Werner, C., Modeling of Chemical Vapor Deposition of Tungsten Films (Birkhaüser, Verlag, 1993).10.1007/978-3-0348-7741-1Google Scholar
[4] Ho, P., Coltrin, M.E., Binkley, J.S., Melius, C.F., J. Phys. Chem., 89, 4647 (1985).10.1021/j100267a046Google Scholar
[5] Spear, K.E., Dirkx, R.R., High Temp. Sci., 27, 107 (1990).Google Scholar
[6] Pons, M., Bernard, C., Madar, R., Surf. Coat. Technol., 61, 274 (1993).10.1016/0257-8972(93)90238-JGoogle Scholar
[7] Allendorf, M.D., J. Electrochem. Soc., 140 (3), 747 (1993).10.1149/1.2056152Google Scholar
[8] Rosner, D. E., Collins, J., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T.M. and Gallois, B.M. (Materials Research Society Symp. 168, Pittsburgh, PA, 1990) pp 43–48.Google Scholar
[9] Gokoglu, S.A., J. Electrochem. Soc., 135, 1562 (1988).10.1149/1.2096053Google Scholar
[10] Zhu, D., Sahai, Y., Metall. Trans., 322, 309 (1991).10.1007/BF02651230Google Scholar
[11] Pons, M., Barbier, J.N., Bernard, C., Madar, R., Appl. Surf. Sci., 73, 71 (1993).10.1016/0169-4332(93)90148-5Google Scholar
[12] Coltrin, M.E., Kee, R.J., Rupley, F.M., Inst. J. Chem. Kin., 23, 1111 (1991).10.1002/kin.550231205Google Scholar
[13] Coltrin, M.E., Kee, R.J., Miller, J.A., J. Electrochem. Soc., 133, 1206 (1986).10.1149/1.2108820Google Scholar
[14] Coltrin, M.E., Kee, R.J., Evans, G.H., J. Electrochem. Soc., 136, 819 (1989).10.1149/1.2096750Google Scholar
[15] Couderc, J.P., Duverneuil, P., J. Electrochem. Soc., 139, 296 (1992).Google Scholar
[16] Allendorf, M.D., Kee, R.J., J. Electrochem. Soc., 138 (3), 1841 (1991).10.1149/1.2085688Google Scholar
[17] Gokoglu, S.A., Kuczmarski, M.A., in CVD-XII International Symposium on Chemical Vapor Deposition, edited by Jensen, K.F. and Cullen, G.W., Proceeding Volume 93–2 (The Electrochemical Society, Pennington, NJ, 1993) pp. 392400.Google Scholar
[18] Blanquet, E., Gokoglu, S.A., in ref. 17, 103–109.Google Scholar
[19] Mountziaris, T.J., Jensen, K.F., J. Crystal Growth, 138, 2426 (1991).Google Scholar
[20] Frenklach, M., Wang, H., Phys. Rev., B 43, 1520 (1991).10.1103/PhysRevB.43.1520Google Scholar
[21] Barbier, J.N., Bernard, C., Proceedings of the 15 th Calphad Meeting, edited by Kaufman, B.L., Calphad (1986) 206.Google Scholar
[22] SGTE databank, Scientific Group Thermodata Europe, BP 66, 38402 Saint-Martin d'Hères, France.Google Scholar
[23] Rouch, H., PhD Thesis, Institut National Polytechnique de Grenoble, 1994.Google Scholar
[24] Bergman, C., Chastel, R., Castanet, R., J. Phase Equi., 13, 2 (1992).Google Scholar
[25] Pons, M., Benezech, A., Huguet, P., Gaufres, R., Diez, Ph., J. CVD (in press).Google Scholar
[26] Bird, R.B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, (Wiley, NY, 1960).Google Scholar
[27] Flux Expert, DT2I, Chemin des Prèles, 38240 Meylan, France, 1994.Google Scholar